skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-I-78: Design of Diagnostic Multileaf Collimator Based On the Monte Carlo Simulation for Dose Reduction of Diagnostic Radiography

Abstract

Purpose: A diagnostics Multileaf Collimator (MLC) was designed for diagnostic radiography dose reduction. Monte Carlo simulation was used to evaluate efficiency of shielding material for producing leaves of Multileaf collimator. Material & Methods: The general radiography unit (Rex-650R, Listem, Korea) was modeling with Monte Carlo simulation (MCNPX, LANL, USA) and we used SRS-78 program to calculate the energy spectrum of tube voltage (80, 100, 120 kVp). The shielding materials was SKD 11 alloy tool steel that is composed of 1.6% carbon(C), 0.4% silicon (Si), 0.6% manganese (Mn), 5% chromium (Cr), 1% molybdenum (Mo), and vanadium (V). The density of it was 7.89 g/m3. We simulated leafs diagnostic MLC using SKD 11 with general radiography unit. We calculated efficiency of diagnostic MLC using tally6 card of MCNPX depending on energy. Results: The diagnostic MLC consisted of 25 individual metal shielding leaves on both sides, with dimensions of 10 × 0.5 × 0.5 cm3. The leaves of MLC were controlled by motors positioned on both sides of the MLC. According to energy (tube voltage), the shielding efficiency of MLC in Monte Carlo simulation was 99% (80 kVp), 96% (100 kVp) and 93% (120 kVp). Conclusion: We certified efficiency of diagnostic MLC fabricatedmore » from SKD11 alloy tool steel. Based on the results, the diagnostic MLC was designed. We will make the diagnostic MLC for dose reduction of diagnostic radiography.« less

Authors:
; ; ; ; ;  [1]
  1. Korea Institute of Radiological & Medical Sciences, Seoul, Seoul (Korea, Republic of)
Publication Date:
OSTI Identifier:
22632138
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPES AND RADIATION SOURCES; 60 APPLIED LIFE SCIENCES; CHROMIUM; COLLIMATORS; COMPUTERIZED SIMULATION; MANGANESE; MOLYBDENUM; MONTE CARLO METHOD; RADIATION DOSES; SHIELDING; SHIELDING MATERIALS; STEELS; VANADIUM

Citation Formats

Han, S, Ji, Y, Kim, K, Choi, S, Jung, H, and Park, S. SU-F-I-78: Design of Diagnostic Multileaf Collimator Based On the Monte Carlo Simulation for Dose Reduction of Diagnostic Radiography. United States: N. p., 2016. Web. doi:10.1118/1.4955906.
Han, S, Ji, Y, Kim, K, Choi, S, Jung, H, & Park, S. SU-F-I-78: Design of Diagnostic Multileaf Collimator Based On the Monte Carlo Simulation for Dose Reduction of Diagnostic Radiography. United States. doi:10.1118/1.4955906.
Han, S, Ji, Y, Kim, K, Choi, S, Jung, H, and Park, S. 2016. "SU-F-I-78: Design of Diagnostic Multileaf Collimator Based On the Monte Carlo Simulation for Dose Reduction of Diagnostic Radiography". United States. doi:10.1118/1.4955906.
@article{osti_22632138,
title = {SU-F-I-78: Design of Diagnostic Multileaf Collimator Based On the Monte Carlo Simulation for Dose Reduction of Diagnostic Radiography},
author = {Han, S and Ji, Y and Kim, K and Choi, S and Jung, H and Park, S},
abstractNote = {Purpose: A diagnostics Multileaf Collimator (MLC) was designed for diagnostic radiography dose reduction. Monte Carlo simulation was used to evaluate efficiency of shielding material for producing leaves of Multileaf collimator. Material & Methods: The general radiography unit (Rex-650R, Listem, Korea) was modeling with Monte Carlo simulation (MCNPX, LANL, USA) and we used SRS-78 program to calculate the energy spectrum of tube voltage (80, 100, 120 kVp). The shielding materials was SKD 11 alloy tool steel that is composed of 1.6% carbon(C), 0.4% silicon (Si), 0.6% manganese (Mn), 5% chromium (Cr), 1% molybdenum (Mo), and vanadium (V). The density of it was 7.89 g/m3. We simulated leafs diagnostic MLC using SKD 11 with general radiography unit. We calculated efficiency of diagnostic MLC using tally6 card of MCNPX depending on energy. Results: The diagnostic MLC consisted of 25 individual metal shielding leaves on both sides, with dimensions of 10 × 0.5 × 0.5 cm3. The leaves of MLC were controlled by motors positioned on both sides of the MLC. According to energy (tube voltage), the shielding efficiency of MLC in Monte Carlo simulation was 99% (80 kVp), 96% (100 kVp) and 93% (120 kVp). Conclusion: We certified efficiency of diagnostic MLC fabricated from SKD11 alloy tool steel. Based on the results, the diagnostic MLC was designed. We will make the diagnostic MLC for dose reduction of diagnostic radiography.},
doi = {10.1118/1.4955906},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The objective of the present work was to propose a design of a secondary multileaf collimator (MLC) for a telecobalt machine and optimize its design features through Monte Carlo simulation. Methods: The proposed MLC design consists of 72 leaves (36 leaf pairs) with additional jaws perpendicular to leaf motion having the capability of shaping a maximum square field size of 35 Multiplication-Sign 35 cm{sup 2}. The projected widths at isocenter of each of the central 34 leaf pairs and 2 peripheral leaf pairs are 10 and 5 mm, respectively. The ends of the leaves and the x-jaws were optimizedmore » to obtain acceptable values of dosimetric and leakage parameters. Monte Carlo N-Particle code was used for generating beam profiles and depth dose curves and estimating the leakage radiation through the MLC. A water phantom of dimension 50 Multiplication-Sign 50 Multiplication-Sign 40 cm{sup 3} with an array of voxels (4 Multiplication-Sign 0.3 Multiplication-Sign 0.6 cm{sup 3}= 0.72 cm{sup 3}) was used for the study of dosimetric and leakage characteristics of the MLC. Output files generated for beam profiles were exported to the PTW radiation field analyzer software through locally developed software for analysis of beam profiles in order to evaluate radiation field width, beam flatness, symmetry, and beam penumbra. Results: The optimized version of the MLC can define radiation fields of up to 35 Multiplication-Sign 35 cm{sup 2} within the prescribed tolerance values of 2 mm. The flatness and symmetry were found to be well within the acceptable tolerance value of 3%. The penumbra for a 10 Multiplication-Sign 10 cm{sup 2} field size is 10.7 mm which is less than the generally acceptable value of 12 mm for a telecobalt machine. The maximum and average radiation leakage through the MLC were found to be 0.74% and 0.41% which are well below the International Electrotechnical Commission recommended tolerance values of 2% and 0.75%, respectively. The maximum leakage through the leaf ends in closed condition was observed to be 8.6% which is less than the values reported for other MLCs designed for medical linear accelerators. Conclusions: It is concluded that dosimetric parameters and the leakage radiation of the optimized secondary MLC design are well below their recommended tolerance values. The optimized design of the proposed MLC can be integrated into a telecobalt machine by replacing the existing adjustable secondary collimator for conformal radiotherapy treatment of cancer patients.« less
  • A multileaf collimator (MLC) model, 'MATMLC', was developed to simulate MLCs for Monte Carlo (MC) dose calculations of intensity-modulated radiation therapy (IMRT). This model describes MLCs using matrices of regions, each of which can be independently defined for its material and geometry, allowing flexibility in simulating MLCs from various manufacturers. The free parameters relevant to the dose calculations with this MLC model included MLC leaf density, interleaf air gap, and leaf geometry. To commission the MLC model and its free parameters for the Varian Millennium MLC-120 (Varian Oncology Systems, Palo Alto, CA), we used the following leaf patterns: (1) MLC-blockedmore » fields to test the effects of leaf transmission and leakage; (2) picket-fence fields to test the effects of the interleaf air gap and tongue-groove design; and (3) abutting-gap fields to test the effects of rounded leaf ends. Transmission ratios and intensity maps for these leaf patterns were calculated with various sets of modeling parameters to determine their dosimetric effects, sensitivities, and their optimal combinations to give the closest agreement with measured results. Upon commissioning the MLC model, we computed dose distributions for clinical IMRT plans using the MC system and verified the results with those from ion chamber and thermoluminescent dosimeter measurements in water phantoms and anthropomorphic phantoms. This study showed that the MLC transmission ratios were strongly dependent on both leaf density and the interleaf air gap. The effect of interleaf air gap and tongue-groove geometry can be determined most effectively through fence-type MLC patterns. Using the commissioned MLC model, we found that the calculated dose from the MC system agreed with the measured data within clinically acceptable criteria from low- to high-dose regions, showing that the model is acceptable for clinical applications.« less
  • Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom.more » MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc.« less
  • To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF rangedmore » from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.« less
  • We applied Monte Carlo calculations to determine the radiation dose absorbed in water phantoms. Monoenergetic incident x-ray beams with energies from 15 to 100 keV and phantom thicknesses from 5 to 20 cm were considered in this study. We calculated the spatial distributions of energy absorption in the phantom, the rad/R conversion factors, the average rad/R conversion factors, and the scatter-to-primary ratios of absorbed dose. We also compared the relative absorbed doses under various imaging conditions when the transmitted radiation produced a given optical density on radiographic film. The information provided will be useful for the estimation of radiation dosesmore » in various radiographic procedures.« less