skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-I-67: Neurometabolic Effect Induced by Repeated Exposure to Dizocilpine On Prefrontal Cortex of Schizophrenic Animal Model Using In Vivo Proton Magnetic Resonance Spectroscopy at 9.4 T

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4955895· OSTI ID:22632128
;  [1]; ;  [1];  [2]
  1. Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)
  2. Asan Institute for Life Sciences, Asan Medical Center, Seoul (Korea, Republic of)

Purpose: Repeated exposure of dizocilpine (MK-801) can provide a pathophysiological model for progressive development of schizophrenia. In vivo proton magnetic resonance spectroscopy ({sup 1}H MRS) was widely used for non-invasive measurement of neurometabolites, and assessment of disease-induced neurometabolic alterations. The purpose of this study was to investigate neurometabolic alteration in prefrontal cortex (PFC) with respect to progression (from first-episode to chronic stage) of schizophrenia by using in vivo {sup 1}H MRS. Methods: We used high-field {sup 1}H MRS to investigate the neurometabolic alteration in the PFC region of the rats (N = 13) by comparing before and after 6 day of MK-801 (0.5 mg/kg) treatment. A point-resolved spectroscopy (PRESS) sequence was used to obtain spectra in a 22.5 µL of volume of interest carefully located in PFC region with parameters like follow; repetition time, 5000ms; echo time (TE), 13.4 ms; averages = 256. Another experiment group (N = 11) were conducted behavior test by recording the behavior for 20 min. Results: All the rats showed hyperlocomotion, stereotyped behaviors before initiation of MRS. Significantly increased level (N = 7, p < 0.05) of N-acetylasrparate (NAA), glutamate (Glu), taurine and decreased level (N = 6, p < 0.05) of NAA, Glu and phosphocreatine were observed between baseline and day 6. Both metabolic alterations are consistent with results of first-episode and chronic schizophrenia respectively. Conclusion: From our findings, the repeated MK-801 model could be a pathophysiological model which can provide an insight into the transition from first-episode to chronic stage. This is first time to investigate effects of repeated MK-801 using high-field in vivo 1H MRS. We expect our findings can contribute to combining previous diverging results into one pathophysiological interpretation, which can postulate the origin of diverging results to the progression of schizophrenia.

OSTI ID:
22632128
Journal Information:
Medical Physics, Vol. 43, Issue 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English