skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T

Abstract

Purpose: Nicotine exerts its effects through the activation of nicotinic acetylcholine receptors (nAChRs). Varenicline, a smoking cessation aid, is a partial agonist acting at the α4β2 nAChRs. Although nicotine and varenicline contribute to the reward system at the same time, the influence of the substances on hippocampal neurochemical changes has not been investigated yet. We therefore studied the effects of repeated nicotine exposure and varenicline administration on hippocampus of rats by using in vivo proton magnetic resonance spectroscopy (1H MRS) at 9.4T. Methods: Male Wistar rats (n = 11; mean body weight, 304.9 ± 9.9 g) were divided into 3 groups: control rats (control, n = 3); nicotine-induced rats (nicotine, n = 4); and nicotine- and varenicline-induced rats (varenicline, n = 4). Acquisition of in vivo MRS was conducted by using 9.4 T Agilent Scanner. The linear combination of model spectra (LCModel, version 6.3, Stephen W. Provencher) fitting software was used to quantify the metabolites in the frequency domain, using the basis metabolites. Results: In this study, the results show the tendency of increased Glu level in nicotine group than in the control and varenicline groups. Moreover, GSH and NAA levels tended to decrease in the nicotine group in comparisonmore » with those in the control and varenicline groups. Conclusion: These findings indicate that the hippocampus is integrally linked to the brain reward sensitization involved in addiction and glutamate release through mobilization of intracellular calcium stores. Further, oxidative stress and toxicity of nicotine on brain would cause the decline of GSH and NAA. In conclusion, we found that varenicline effectively inhibits the reward cycle.« less

Authors:
;  [1];  [2]; ;  [1];  [3]
  1. Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Seoul (Korea, Republic of)
  2. (Korea, Republic of)
  3. Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul (Korea, Republic of)
Publication Date:
OSTI Identifier:
22632127
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACETYLCHOLINE; CALCIUM; COMPUTER CODES; FLUCTUATIONS; HIPPOCAMPUS; IN VIVO; METABOLITES; NEUTRON ACTIVATION ANALYSIS; NICOTINE; OXIDATION; RATS; RECEPTORS; SMOKES; SPECTROSCOPY

Citation Formats

Lim, S-I, Yoo, C-H, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul, Song, K-H, Choe, B-Y, and Woo, D-C. SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T. United States: N. p., 2016. Web. doi:10.1118/1.4955894.
Lim, S-I, Yoo, C-H, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul, Song, K-H, Choe, B-Y, & Woo, D-C. SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T. United States. doi:10.1118/1.4955894.
Lim, S-I, Yoo, C-H, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul, Song, K-H, Choe, B-Y, and Woo, D-C. 2016. "SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T". United States. doi:10.1118/1.4955894.
@article{osti_22632127,
title = {SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T},
author = {Lim, S-I and Yoo, C-H and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul and Song, K-H and Choe, B-Y and Woo, D-C},
abstractNote = {Purpose: Nicotine exerts its effects through the activation of nicotinic acetylcholine receptors (nAChRs). Varenicline, a smoking cessation aid, is a partial agonist acting at the α4β2 nAChRs. Although nicotine and varenicline contribute to the reward system at the same time, the influence of the substances on hippocampal neurochemical changes has not been investigated yet. We therefore studied the effects of repeated nicotine exposure and varenicline administration on hippocampus of rats by using in vivo proton magnetic resonance spectroscopy (1H MRS) at 9.4T. Methods: Male Wistar rats (n = 11; mean body weight, 304.9 ± 9.9 g) were divided into 3 groups: control rats (control, n = 3); nicotine-induced rats (nicotine, n = 4); and nicotine- and varenicline-induced rats (varenicline, n = 4). Acquisition of in vivo MRS was conducted by using 9.4 T Agilent Scanner. The linear combination of model spectra (LCModel, version 6.3, Stephen W. Provencher) fitting software was used to quantify the metabolites in the frequency domain, using the basis metabolites. Results: In this study, the results show the tendency of increased Glu level in nicotine group than in the control and varenicline groups. Moreover, GSH and NAA levels tended to decrease in the nicotine group in comparison with those in the control and varenicline groups. Conclusion: These findings indicate that the hippocampus is integrally linked to the brain reward sensitization involved in addiction and glutamate release through mobilization of intracellular calcium stores. Further, oxidative stress and toxicity of nicotine on brain would cause the decline of GSH and NAA. In conclusion, we found that varenicline effectively inhibits the reward cycle.},
doi = {10.1118/1.4955894},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Single prolonged stress (SPS) is an animal model of posttraumatic stress disorder (PTSD). However, it has not been known how PTSD develops from the first exposure to traumatic events and neurochemical differences between acute/single stress and PTSD-triggering stress. Therefore, the object of this study is to determine time-dependent neurochemical changes in prefrontal cortex (PFC) of rats using in vivo proton magnetic resonance spectroscopy (1H-MRS). Methods: Male Sprague-Dawley rats (n=14; body weight=200–220g) were used. The SPS protocol was used in this study. Rats were restrained for 2h and then immediately forced to swim for 20min in water (20–24 Celsius). Aftermore » a 15-min recuperation period, rats were exposed to ether (using a desiccator) until general anesthesia occurred (<5min). In vivo proton MRS was performed 30min before the SPS (Base), approximately 10min after the SPS (D+0), 3 (D+3) and 7 (D+7) days after SPS to investigate time-dependent changes on metabolites levels in the PFC. Acquisition of in vivo MRS spectra and MRI was conducted at the four time points using 9.4 T Agilent Scanner. Concentration of metabolites was quantified by LCModel. Results: Statistical significance was analyzed using one-way ANOVA with post hoc Tukey HSD tests to assess the metabolite changes in the PFC. The SPS resulted in significant stress-induced differences for 7 days in glutamine (F(3,52)=6.750, P=0.001), choline-containing compounds (F(3,52)=16.442, P=0.000), glutamine/glutamate concentrations (F(3,52)=7.352, P=0.000). Conclusion: PTSD in human is associated with decreased neuronal activity in the PFC. In this study, SPS altered total choline, glutamine levels but not NAA levels in the PFC of the rats. Therefore, for the three stressors and quiescent period of seven days, SPS attenuated excitatory tone and membrane turnover but did not affect neural integrity in the PFC.« less
  • The tritium-hydrogen exchange kinetics of Torpedo californica AChR, in native membrane vesicles at pH 7.4 and 0 degrees C, have been analyzed in the presence of agonists, partial agonists, local anesthetics, and competitive antagonists. The agonists carbamylcholine (10 microM-1 mM) and suberyldicholine (10 microM) and the partial agonists decamethonium (25 microM and 1 mM) and hexamethonium (1 mM) have no effect on the exchange kinetics, although at lower concentration carbamylcholine may slightly accelerate exchange. Nondesensitizing local anesthetics do affect the exchange behavior, dependent on concentration. Procaine at 500 microM moderately retards exchange while procaine at 10 mM and tetracaine atmore » 5 mM slightly accelerate exchange. The competitive antagonist alpha-bungarotoxin retards exchange significantly, as does d-tubocurarine although to a lesser extent. These results suggest that the resting and desensitized conformations of the AChR are very similar in overall solvent accessibility and that at lower concentrations noncompetitive blockers such as procaine may stabilize a less solvent-accessible state of the AChR. The competitive antagonists alpha-bungarotoxin and d-tubocurare also stabilize a dynamically restricted, less solvent-accessible conformation of the acetylcholine receptor, demonstrating that a large conformational change accompanies binding of these toxins. Any change in conformation which may accompany desensitization is very different from these effects.« less
  • The key to protein structure determination by NMR lies in the identification of as many {sup 1}H-{sup 1}H nuclear Overhauser effects (NOEs) as possible in order to obtain a large set of approximate interproton distance restraints. With the advent of a range of heteronuclear three-dimensional (3D) NMR experiments, it has now become possible to obtain complete {sup 1}H, {sup 15}N, and {sup 13}C assignments and to determine the 3D structures of proteins in the 15-25-kDa molecular weight range. Despite these advances, it has remained impossible to observe NOEs between protons with degenerate chemical shifts. Such interactions occur repeatedly, both amongmore » aliphatic or aromatic protons and between sequential amide protons in helical proteins. Here the authors describe a 3D heteronuclear experiment that allows the observation of these NOEs and demonstrate its applicability for calmodulin, a protein of 148 residues and molecular weight 16.7 kDa.« less
  • Purpose: The aim of this study was to detect the non-neoplastic white-matter changes vs. time after irradiation using {sup 1}H nuclear magnetic resonance (NMR) spectroscopy in vivo. Methods and Materials: A total of 394 {sup 1}H MR spectra were acquired from 100 patients (age 19-74 years; mean and median age, 43 years) before and during 2 years after radiation therapy (the mean absorbed doses calculated for the averaged spectroscopy voxels are similar and close to 20 Gy). Results: Ocilations were observed in choline-containing compounds (Cho)/creatine and phosphocreatine (Cr), Cho/N-acetylaspartate (NAA), and center of gravity (CG) of the lipid band inmore » the range of 0.7-1.5 ppm changes over time reveal oscillations. The parameters have the same 8-month cycle period; however the CG changes precede the other by 2 months. Conclusions: The results indicate the oscillative nature of the brain response to irradiation, which may be caused by the blood-brain barrier disruption and repair processes. These oscillations may influence the NMR results, depending on the cycle phase in which the NMR measurements are performed in. The earliest manifestation of radiation injury detected by magnetic resonance spectroscopy is the CG shift.« less
  • Purpose: Repeated exposure of dizocilpine (MK-801) can provide a pathophysiological model for progressive development of schizophrenia. In vivo proton magnetic resonance spectroscopy ({sup 1}H MRS) was widely used for non-invasive measurement of neurometabolites, and assessment of disease-induced neurometabolic alterations. The purpose of this study was to investigate neurometabolic alteration in prefrontal cortex (PFC) with respect to progression (from first-episode to chronic stage) of schizophrenia by using in vivo {sup 1}H MRS. Methods: We used high-field {sup 1}H MRS to investigate the neurometabolic alteration in the PFC region of the rats (N = 13) by comparing before and after 6 daymore » of MK-801 (0.5 mg/kg) treatment. A point-resolved spectroscopy (PRESS) sequence was used to obtain spectra in a 22.5 µL of volume of interest carefully located in PFC region with parameters like follow; repetition time, 5000ms; echo time (TE), 13.4 ms; averages = 256. Another experiment group (N = 11) were conducted behavior test by recording the behavior for 20 min. Results: All the rats showed hyperlocomotion, stereotyped behaviors before initiation of MRS. Significantly increased level (N = 7, p < 0.05) of N-acetylasrparate (NAA), glutamate (Glu), taurine and decreased level (N = 6, p < 0.05) of NAA, Glu and phosphocreatine were observed between baseline and day 6. Both metabolic alterations are consistent with results of first-episode and chronic schizophrenia respectively. Conclusion: From our findings, the repeated MK-801 model could be a pathophysiological model which can provide an insight into the transition from first-episode to chronic stage. This is first time to investigate effects of repeated MK-801 using high-field in vivo 1H MRS. We expect our findings can contribute to combining previous diverging results into one pathophysiological interpretation, which can postulate the origin of diverging results to the progression of schizophrenia.« less