skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-I-55: Performance Evaluation of Digital PET/CT: Medical Physics Basis for the Clinical Applications

Abstract

Purpose: Replacement of conventional PMT-based detector with next generation digital photon counting (DPC) detector is a technology leap for PET imaging. This study evaluated the performance and characteristics of the DPC system and its stability within a 1 year time window following its installation focusing on the medical physics basis for clinical applications. Methods: A digital PET/CT scanner using 1:1 coupling of 23,040 crystal: detector elements was introduced and became operational at OSU. We tested and evaluated system performance and characteristics using NEMA NU2-2012. System stabilities in timing resolution, energy resolution, detector temperature and humidity (T&H) were monitored over 1-yr. Timing, energy and spatial resolution were characterized across clinically relevant count rate range. CQIE uniformity PET and NEMA IEC-Body PET with hot spheres varying with sizes and contrasts were performed. PET reconstructed in standard(4mm), High(2mm) and Ultra-High(1mm) definitions were evaluated. Results: NEMA results showed PET spatial resolution (mm-FWHM) from 4.01&4.14 at 1cm to 5.82&6.17 at 20cm in transverse & axial. 322±3ps timing and 11.0% energy resolution were measured. 5.7kcps/MBq system sensitivity with 24kcps/MBq effective sensitivity was obtained. The peak-NECR was ∼171kcps with the effective peak-NECR >650kcps@50kBq/mL. Scatter fraction was ∼30%, and the maximum trues was >900kcps. NEMA IQ demonstrated hotmore » sphere contrast ranging from ∼62%±2%(10mm) to ∼88%±2%(22mm), cold sphere contrast of ∼86%±2%(28mm) and ∼89%±3%(37mm) and excellent uniformity. Monitoring 1-yr stability, it revealed ∼1% change in timing, ±0.4% change in energy resolution, and <10% variations in T&H. CQIE PET gave <3% SUV variances in axial. 60%–100% recovery coefficients across sphere sizes and contrast levels were achieved. Conclusion: Characteristics and stability of the next generation DPC PET detector system over an 1-yr time window was excellent and better than prior experiences. It demonstrated improved and robust system characteristics and performance in spatial resolution, sensitivity, timing and energy resolution, count rate and image quality. Michael Miller is an employee of Philips Healthcare.« less

Authors:
;  [1];  [2]
  1. The Ohio State University, Columbus, OH (United States)
  2. Philips Healthcare, Highland Heights, OH (United States)
Publication Date:
OSTI Identifier:
22632120
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COUNTING RATES; ENERGY RESOLUTION; EVALUATION; IMAGES; INSTALLATION; PEAKS; PERFORMANCE; POSITRON COMPUTED TOMOGRAPHY; SENSITIVITY; SPATIAL RESOLUTION

Citation Formats

Zhang, J, Knopp, MV, and Miller, M. SU-F-I-55: Performance Evaluation of Digital PET/CT: Medical Physics Basis for the Clinical Applications. United States: N. p., 2016. Web. doi:10.1118/1.4955883.
Zhang, J, Knopp, MV, & Miller, M. SU-F-I-55: Performance Evaluation of Digital PET/CT: Medical Physics Basis for the Clinical Applications. United States. doi:10.1118/1.4955883.
Zhang, J, Knopp, MV, and Miller, M. 2016. "SU-F-I-55: Performance Evaluation of Digital PET/CT: Medical Physics Basis for the Clinical Applications". United States. doi:10.1118/1.4955883.
@article{osti_22632120,
title = {SU-F-I-55: Performance Evaluation of Digital PET/CT: Medical Physics Basis for the Clinical Applications},
author = {Zhang, J and Knopp, MV and Miller, M},
abstractNote = {Purpose: Replacement of conventional PMT-based detector with next generation digital photon counting (DPC) detector is a technology leap for PET imaging. This study evaluated the performance and characteristics of the DPC system and its stability within a 1 year time window following its installation focusing on the medical physics basis for clinical applications. Methods: A digital PET/CT scanner using 1:1 coupling of 23,040 crystal: detector elements was introduced and became operational at OSU. We tested and evaluated system performance and characteristics using NEMA NU2-2012. System stabilities in timing resolution, energy resolution, detector temperature and humidity (T&H) were monitored over 1-yr. Timing, energy and spatial resolution were characterized across clinically relevant count rate range. CQIE uniformity PET and NEMA IEC-Body PET with hot spheres varying with sizes and contrasts were performed. PET reconstructed in standard(4mm), High(2mm) and Ultra-High(1mm) definitions were evaluated. Results: NEMA results showed PET spatial resolution (mm-FWHM) from 4.01&4.14 at 1cm to 5.82&6.17 at 20cm in transverse & axial. 322±3ps timing and 11.0% energy resolution were measured. 5.7kcps/MBq system sensitivity with 24kcps/MBq effective sensitivity was obtained. The peak-NECR was ∼171kcps with the effective peak-NECR >650kcps@50kBq/mL. Scatter fraction was ∼30%, and the maximum trues was >900kcps. NEMA IQ demonstrated hot sphere contrast ranging from ∼62%±2%(10mm) to ∼88%±2%(22mm), cold sphere contrast of ∼86%±2%(28mm) and ∼89%±3%(37mm) and excellent uniformity. Monitoring 1-yr stability, it revealed ∼1% change in timing, ±0.4% change in energy resolution, and <10% variations in T&H. CQIE PET gave <3% SUV variances in axial. 60%–100% recovery coefficients across sphere sizes and contrast levels were achieved. Conclusion: Characteristics and stability of the next generation DPC PET detector system over an 1-yr time window was excellent and better than prior experiences. It demonstrated improved and robust system characteristics and performance in spatial resolution, sensitivity, timing and energy resolution, count rate and image quality. Michael Miller is an employee of Philips Healthcare.},
doi = {10.1118/1.4955883},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The improvement of quality in healthcare can be assessed by Failure Mode and Effects Analysis (FMEA). In radiation oncology, FMEA, as applied to the billing CPT code 77336, can improve both charge capture and, most importantly, quality of the performed services. Methods: We created an FMEA table for the process performed under CPT code 77336. For a given process step, each member of the assembled team (physicist, dosimetrist, and therapist) independently assigned numerical values for: probability of occurrence (O, 1–10), severity (S, 1–10), and probability of detection (D, 1–10) for every failure mode cause and effect combination. The riskmore » priority number, RPN, was then calculated as a product of O, S and D from which an average RPN was calculated for each combination mentioned above. A fault tree diagram, with each process sorted into 6 categories, was created with linked RPN. For processes with high RPN recommended actions were assigned. 2 separate R and V systems (Lantis and EMR-based ARIA) were considered. Results: We identified 9 potential failure modes and corresponding 19 potential causes of these failure modes all resulting in unjustified 77336 charge and compromised quality of care. In Lantis, the range of RPN was 24.5–110.8, and of S values – 2–10. The highest ranking RPN of 110.8 came from the failure mode described as “end-of-treatment check not done before the completion of treatment”, and the highest S value of 10 (RPN=105) from “overrides not checked”. For the same failure modes, within ARIA electronic environment with its additional controls, RPN values were significantly lower (44.3 for end-of-treatment missing check and 20.0 for overrides not checked). Conclusion: Our work has shown that when charge capture was missed that also resulted in some services not being performed. Absence of such necessary services may result in sub-optimal quality of care rendered to patients.« less
  • Proton therapy, in particular, and ion therapy, just beginning, are becoming an increasing focus of attention in clinical radiation oncology and medical physics. Both modalities have been criticized of lacking convincing evidence from randomized trials proving their efficacy, justifying the higher costs involved in these therapies. This session will provide an overview of the current status of clinical trials in proton therapy, including recent developments in ion therapy. As alluded to in the introductory talk by Dr. Schulte, opinions are diverging widely as to the usefulness and need for clinical trials in particle therapy and the challenge of equipoise. Themore » lectures will highlight some of the challenges that surround clinical trials in particle therapy. One, presented by Dr. Choy from UT Southwestern, is that new technology and even different types of particles such as helium and carbon ions are introduced into this environment, increasing the phase space of clinical variables. The other is the issue of medical physics quality assurance with physical phantoms, presented by Mrs. Taylor from IROC Houston, which is more challenging because 3D and 4D image guidance and active delivery techniques are in relatively early stages of development. The role of digital phantoms in developing clinical treatment planning protocols and as a QA tool will also be highlighted by Dr. Lee from NCI. The symposium will be rounded off by a panel discussion among the Symposium speakers, arguing pro or con the need and readiness for clinical trials in proton and ion therapy. Learning Objectives: To get an update on the current status of clinical trials allowing or mandating proton therapy. Learn about the status of planned clinical trials in the U.S. and worldwide involving ion therapy. Discuss the challenges in the design and QA of clinical trials in particle therapy. Learn about existing and future physical and computational anthropomorphic phantoms for charged particle clinical trial development and support. Research reported in this presentation is supported by the National Cancer Institute of the National; Institutes of Health under Award Number P20CA183640.« less
  • Purpose: To determine whether a proposed suite of objective image quality metrics for digital chest radiographs is useful for monitoring image quality in our clinical operation. Methods: Seventeen gridless AP Chest radiographs from a GE Optima portable digital radiography (DR) unit (Group 1), seventeen (routine) PA Chest radiographs from a GE Discovery DR unit (Group 2), and sixteen gridless (non-routine) PA Chest radiographs from the same Discovery DR unit (Group 3) were chosen for analysis. Groups were selected to represent “sub-standard” (Group 1), “standard-of-care” (Group 2), and images with a gross technical error (Group 3). Group 1 images were acquiredmore » with lower kVp (90 vs. 125), shorter source-to-image distance (127cm vs 183cm) and were expected to have lower quality than images in Group 2. Group 3 was expected to have degraded contrast versus Group 2.This evaluation was approved by the institutional Quality Improvement Assurance Board (QIAB). Images were anonymized and securely transferred to the Duke University Clinical Imaging Physics Group for analysis using software previously described{sup 1} and validated{sup 2}. Image quality for individual images was reported in terms of lung grey level(Lgl); lung noise(Ln); rib-lung contrast(RLc); rib sharpness(Rs); mediastinum detail(Md), noise(Mn), and alignment(Ma); subdiaphragm-lung contrast(SLc); and subdiaphragm area(Sa). Metrics were compared across groups. Results: Metrics agreed with published Quality Consistency Ranges with three exceptions: higher Lgl, lower RLc, and SDc. Higher bit depth (16 vs 12) accounted for higher Lgl values in our images. Values were most internally consistent for Group 2. The most sensitive metric for distinguishing between groups was Mn followed closely by Ln. The least sensitive metrics were Md and RLc. Conclusion: The software appears promising for objectively and automatically identifying substandard images in our operation. The results can be used to establish local quality consistency ranges and action limits per facility preferences.« less
  • Purpose: A survey was taken by NRG Oncology to assess Full Time Equivalent (FTE) contributions to multi institutional clinical trials by medical physicists.No current quantification of physicists’ efforts in FTE units associated with clinical trials is available. The complexity of multi-institutional trials increases with new technologies and techniques. Proper staffing may directly impact the quality of trial data and outcomes. The demands on physics time supporting clinical trials needs to be assessed. Methods: The NRG Oncology Medical Physicist Subcommittee created a sixteen question survey to obtain this FTE data. IROC Houston distributed the survey to their list of 1802 contactmore » physicists. Results: After three weeks, 363 responded (20.1% response). 187 (51.5%) institutions reporting external beam participation were processed. There was a wide range in number of protocols active and supported at each institution. Of the 187 clinics, 134 (71.7%) participate in 0 to 10 trials, 28 (15%) in 11 to 20 trials, 10 (5.3%) in 21 to 30 trials, 9 (4.8%) had 40 to 75 trials. On average, physicist spent 2.7 hours (SD: 6.0) per week supervising or interacting with clinical trial staff. 1.25 hours (SD: 3.37), 1.83 hours (SD: 4.13), and 0.64 hours(SD: 1.13) per week were spent on patient simulation, reviewing treatment plans, and maintaining a DICOM server, respectively. For all protocol credentialing activities, physicist spent an average of 37.05 hours (SD: 96.94) yearly. To support dosimetrists, clinicians, and therapists, physicist spend on average 2.07 hours (SD: 3.52) per week just reading protocols. Physicist attended clinical trial meetings for on average 1.13 hours (SD: 1.85) per month. Conclusion: Responding physicists spend a nontrivial amount of time: 8.8 hours per week (0.22 FTE) supporting, on average, 9 active multi-institutional clinical trials.« less
  • At the SYnchrotron Radiation for MEdical Physics (SYRMEP) beamline of Elettra Synchrotron Light Laboratory in Trieste (Italy), an extensive research program in bio-medical imaging has been developed since 1997. The core program carried out by the SYRMEP collaboration concerns the use of Synchrotron Radiation (SR) for clinical mammography with the aim of improving the diagnostic performance of the conventional technique. The first protocol with patients, started in 2006 has been completed at the end of 2009 and the data analysis is now in progress.Regarding applications different from clinical imaging, synchrotron X-ray computed microtomography (micro-CT) is the most used technique, bothmore » in absorption and phase contrast. A new software tool, Pore3D, has been developed to perform a quantitative morphological analysis on the reconstructed slices and to access textural information of the sample under study.« less