skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-I-36: In-Utero Dose Measurements Within Postmortem Subjects for Estimating Fetal Doses in Pregnant Patients Examined with Pulmonary Embolism, Trauma, and Appendicitis CT

Abstract

Purpose: The imaging of pregnant patients is medically necessary in certain clinical situations. The purpose of this work was to directly measure uterine doses in a cadaver scanned with CT protocols commonly performed on pregnant patients in order to estimate fetal dose and assess potential risk. Method: One postmortem subject was scanned on a 320-slice CT scanner with standard pulmonary embolism, trauma, and appendicitis protocols. All protocols were performed with the scan parameters and ranges currently used in clinical practice. Exams were performed both with and without iterative reconstruction to highlight the dose savings potential. Optically stimulated luminescent dosimeters (OSLDs) were inserted into the uterus in order to approximate fetal doses. Results: In the pulmonary embolism CT protocol, the uterus is outside of the primary beam, and the dose to the uterus was under 1 mGy. In the trauma and appendicitis protocols, the uterus is in the primary beam, the fetal dose estimates were 30.5 mGy for the trauma protocol, and 20.6 mGy for the appendicitis protocol. Iterative reconstruction reduced fetal doses by 30%, with uterine doses at 21.3 for the trauma and 14.3 mGy for the appendicitis protocol. Conclusion: Fetal doses were under 1 mGy when exposed to scattermore » radiation, and under 50 mGy when exposed to primary radiation with the trauma and appendicitis protocols. Consistent with the National Council on Radiation Protection & Measurements (NCRP) and the International Commission on Radiological Protection (ICRP), these doses exhibit a negligible risk to the fetus, with only a small increased risk of cancer. Still, CT scans are not recommended during pregnancy unless the benefits of the exam clearly outweigh the potential risk. Furthermore, when possible, pregnant patients should be examined on CT scanners equipped with iterative reconstruction in order to keep patient doses as low as reasonable achievable.« less

Authors:
; ; ; ; ; ; ;  [1]
  1. University of Florida, Gainesville, FL (United States)
Publication Date:
OSTI Identifier:
22626796
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; DOSEMETERS; FETUSES; HAZARDS; IMAGE PROCESSING; INJURIES; ITERATIVE METHODS; LUMINESCENCE; NEOPLASMS; PATIENTS; PREGNANCY; RADIATION DOSES; RADIATION PROTECTION; UTERUS

Citation Formats

Lipnharski, I, Quails, N, Carranza, C, Correa, N, Bidari, S, Bickelhaup, M, Rill, L, and Arreola, M. SU-F-I-36: In-Utero Dose Measurements Within Postmortem Subjects for Estimating Fetal Doses in Pregnant Patients Examined with Pulmonary Embolism, Trauma, and Appendicitis CT. United States: N. p., 2016. Web. doi:10.1118/1.4955864.
Lipnharski, I, Quails, N, Carranza, C, Correa, N, Bidari, S, Bickelhaup, M, Rill, L, & Arreola, M. SU-F-I-36: In-Utero Dose Measurements Within Postmortem Subjects for Estimating Fetal Doses in Pregnant Patients Examined with Pulmonary Embolism, Trauma, and Appendicitis CT. United States. doi:10.1118/1.4955864.
Lipnharski, I, Quails, N, Carranza, C, Correa, N, Bidari, S, Bickelhaup, M, Rill, L, and Arreola, M. Wed . "SU-F-I-36: In-Utero Dose Measurements Within Postmortem Subjects for Estimating Fetal Doses in Pregnant Patients Examined with Pulmonary Embolism, Trauma, and Appendicitis CT". United States. doi:10.1118/1.4955864.
@article{osti_22626796,
title = {SU-F-I-36: In-Utero Dose Measurements Within Postmortem Subjects for Estimating Fetal Doses in Pregnant Patients Examined with Pulmonary Embolism, Trauma, and Appendicitis CT},
author = {Lipnharski, I and Quails, N and Carranza, C and Correa, N and Bidari, S and Bickelhaup, M and Rill, L and Arreola, M},
abstractNote = {Purpose: The imaging of pregnant patients is medically necessary in certain clinical situations. The purpose of this work was to directly measure uterine doses in a cadaver scanned with CT protocols commonly performed on pregnant patients in order to estimate fetal dose and assess potential risk. Method: One postmortem subject was scanned on a 320-slice CT scanner with standard pulmonary embolism, trauma, and appendicitis protocols. All protocols were performed with the scan parameters and ranges currently used in clinical practice. Exams were performed both with and without iterative reconstruction to highlight the dose savings potential. Optically stimulated luminescent dosimeters (OSLDs) were inserted into the uterus in order to approximate fetal doses. Results: In the pulmonary embolism CT protocol, the uterus is outside of the primary beam, and the dose to the uterus was under 1 mGy. In the trauma and appendicitis protocols, the uterus is in the primary beam, the fetal dose estimates were 30.5 mGy for the trauma protocol, and 20.6 mGy for the appendicitis protocol. Iterative reconstruction reduced fetal doses by 30%, with uterine doses at 21.3 for the trauma and 14.3 mGy for the appendicitis protocol. Conclusion: Fetal doses were under 1 mGy when exposed to scatter radiation, and under 50 mGy when exposed to primary radiation with the trauma and appendicitis protocols. Consistent with the National Council on Radiation Protection & Measurements (NCRP) and the International Commission on Radiological Protection (ICRP), these doses exhibit a negligible risk to the fetus, with only a small increased risk of cancer. Still, CT scans are not recommended during pregnancy unless the benefits of the exam clearly outweigh the potential risk. Furthermore, when possible, pregnant patients should be examined on CT scanners equipped with iterative reconstruction in order to keep patient doses as low as reasonable achievable.},
doi = {10.1118/1.4955864},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}