skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-I-33: Estimating Radiation Dose in Abdominal Fat Quantitative CT

Abstract

Purpose: To compare size-specific dose estimate (SSDE) in abdominal fat quantitative CT with another dose estimate D{sub size,L} that also takes into account scan length. Methods: This study complied with the requirements of the Health Insurance Portability and Accountability Act. At our institution, abdominal fat CT is performed with scan length = 1 cm and CTDI{sub vol} = 4.66 mGy (referenced to body CTDI phantom). A previously developed CT simulation program was used to simulate single rotation axial scans of 6–55 cm diameter water cylinders, and dose integral of the longitudinal dose profile over the central 1 cm length was used to predict the dose at the center of one-cm scan range. SSDE and D{sub size,L} were assessed for 182 consecutive abdominal fat CT examinations with mean water-equivalent diameter (WED) of 27.8 cm ± 6.0 (range, 17.9 - 42.2 cm). Patient age ranged from 18 to 75 years, and weight ranged from 39 to 163 kg. Results: Mean SSDE was 6.37 mGy ± 1.33 (range, 3.67–8.95 mGy); mean D{sub size,L} was 2.99 mGy ± 0.85 (range, 1.48 - 4.88 mGy); and mean D{sub size,L}/SSDE ratio was 0.46 ± 0.04 (range, 0.40 - 0.55). Conclusion: The conversion factors for size-specific dosemore » estimate in AAPM Report No. 204 were generated using 15 - 30 cm scan lengths. One needs to be cautious in applying SSDE to small length CT scans. For abdominal fat CT, SSDE was 80–150% higher than the dose of 1 cm scan length.« less

Authors:
; ;  [1]
  1. Massachusetts General Hospital, Boston, MA (United States)
Publication Date:
OSTI Identifier:
22626794
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; FATS; IMAGE PROCESSING; PATIENTS; PERSONNEL MANAGEMENT; PHANTOMS; RADIATION DOSES; SIMULATION

Citation Formats

Li, X, Yang, K, and Liu, B. SU-F-I-33: Estimating Radiation Dose in Abdominal Fat Quantitative CT. United States: N. p., 2016. Web. doi:10.1118/1.4955861.
Li, X, Yang, K, & Liu, B. SU-F-I-33: Estimating Radiation Dose in Abdominal Fat Quantitative CT. United States. doi:10.1118/1.4955861.
Li, X, Yang, K, and Liu, B. 2016. "SU-F-I-33: Estimating Radiation Dose in Abdominal Fat Quantitative CT". United States. doi:10.1118/1.4955861.
@article{osti_22626794,
title = {SU-F-I-33: Estimating Radiation Dose in Abdominal Fat Quantitative CT},
author = {Li, X and Yang, K and Liu, B},
abstractNote = {Purpose: To compare size-specific dose estimate (SSDE) in abdominal fat quantitative CT with another dose estimate D{sub size,L} that also takes into account scan length. Methods: This study complied with the requirements of the Health Insurance Portability and Accountability Act. At our institution, abdominal fat CT is performed with scan length = 1 cm and CTDI{sub vol} = 4.66 mGy (referenced to body CTDI phantom). A previously developed CT simulation program was used to simulate single rotation axial scans of 6–55 cm diameter water cylinders, and dose integral of the longitudinal dose profile over the central 1 cm length was used to predict the dose at the center of one-cm scan range. SSDE and D{sub size,L} were assessed for 182 consecutive abdominal fat CT examinations with mean water-equivalent diameter (WED) of 27.8 cm ± 6.0 (range, 17.9 - 42.2 cm). Patient age ranged from 18 to 75 years, and weight ranged from 39 to 163 kg. Results: Mean SSDE was 6.37 mGy ± 1.33 (range, 3.67–8.95 mGy); mean D{sub size,L} was 2.99 mGy ± 0.85 (range, 1.48 - 4.88 mGy); and mean D{sub size,L}/SSDE ratio was 0.46 ± 0.04 (range, 0.40 - 0.55). Conclusion: The conversion factors for size-specific dose estimate in AAPM Report No. 204 were generated using 15 - 30 cm scan lengths. One needs to be cautious in applying SSDE to small length CT scans. For abdominal fat CT, SSDE was 80–150% higher than the dose of 1 cm scan length.},
doi = {10.1118/1.4955861},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Computed tomography is one of the most popular medical imaging modalities used in the last years. However, because is one of the techniques that delivered a considerable radiation dose, precautions should be taken into account. Pediatric patients are more radiosensitive than adults, and the probability that no desirable biological effects can occur is greater. To this, also it adds the probability that they will need more radiological studies in the future. The work consisted in determining the received dose by the pediatric patients undergoing abdominal studies in a multislice computed tomograph, according to the dosimetric quantities established by a Codemore » of Practice published by the International Atomic Energy Agency; using a ionization chamber and a phantom that simulates the abdomen of a pediatric patient. The weighted air kerma index (C{sub w}) was 14.3{+-}0.4 mGy, this value is lower than the published by the American College of Radiology, 25 mGy. The multiple scan average dose (MSAD), which is a quantity established by the NOM-229-SSA1-2002 was determined, finding a value of 14.2{+-}0.1 mGy, it is also below the value established, 25 mGy for an adult study.« less
  • Purpose: To explore the feasibility of extracting the relative density from quantitative MRI measurements as well as estimate a correlation between the extracted measures and CT Hounsfield units. Methods: MRI has the ability to separate water and fat signals, producing two separate images for each component. By performing appropriate corrections on the separated images, quantitative measurement of water and fat mass density can be estimated. This work aims to test this hypothesis on 1.5T.Peanut oil was used as fat-representative, while agar as water-representative. Gadolinium Chloride III and Sodium Chloride were added to the agar solution to adjust the relaxation timesmore » and the medium conductivity, respectively. Peanut oil was added to the agar solution with different percentages: 0%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. The phantom was scanned on 1.5T GE Optima 450W with the body coil using a multigradient echo sequences. Water/fat separation were performed while correcting for main field (B0) inhomogeneity and T{sub 2}* relaxation time. B1+ inhomogeneities were ignored. The phantom was subsequently scanned on a Philips Brilliance CT Big Bore. MR-corrected fat signal from all vials were normalized to 100% fat signal. CT Hounsfield values were then compared to those obtained from the normalized MR-corrected fat values as well as to the phantom for validation. Results: Good agreement were found between CT HU and the MR-extracted fat values (R{sup 2} = 0.98). CT HU also showed excellent agreement with the prepared fat fractions (R{sup 2}=0.99). Vials with 70%, 80%, and 90% fat percentages showed inhomogeneous distributions, however their results were included for completion. Conclusion: Quantitative MRI water/fat imaging can be potentially used to extract the relative tissue density. Further in-vivo validation are required.« less
  • Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generatedmore » using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less
  • Figures were derived representing the biological effect of radiotherapy on normal tissues in cases of carcinoma of the cervix. The doses causing both early and late effects are calculated by using quantitative relationships determined from clinical considerations between physical factors (dose, time-dose rate, fraction dose, and numbers of fractions) and the effects to calculate the combined effects of the two modalities of radiation at significant points in the pelvis. Sample calculations are shown for techniques used at some major clinical centers. (auth)