skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy

Abstract

Purpose: The aim of this study is to develop radiation treatment planning using magnetic susceptibility obtained from quantitative susceptibility mapping (QSM) via MR imaging. This study demonstrates the feasibility of a method for generating a substitute for a CT image from an MRI. Methods: The head of a healthy volunteer was scanned using a CT scanner and a 3.0 T MRI scanner. The CT imaging was performed with a slice thickness of 2.5 mm at 80 and 120 kV (dual-energy scan). These CT images were converted to relative electron density (rED) using the CT-rED conversion table generated by a previous dual-energy CT scan. The CT-rED conversion table was generated using the conversion of the energy-subtracted CT number to rED via a single linear relationship. One T2 star-weighted 3D gradient echo-based sequence with four different echo times images was acquired using the MRI scanner. These T2 star-weighted images were used to estimate the phase data. To estimate the local field map, a Laplacian unwrapping of the phase and background field removal algorithm were implemented to process phase data. To generate a magnetic susceptibility map from the local field map, we used morphology enabled dipole inversion method. The rED map was resampledmore » to the same resolution as magnetic susceptibility, and the magnetic susceptibility-rED conversion table was obtained via voxel-by-voxel mapping between the magnetic susceptibility and rED maps. Results: A correlation between magnetic susceptibility and rED is not observed through our method. Conclusion: Our results show that the correlation between magnetic susceptibility and rED is not observed. As the next step, we assume that the voxel of the magnetic susceptibility map comprises two materials, such as water (0 ppm) and bone (-2.2 ppm) or water and marrow (0.81ppm). The elements of each voxel were estimated from the ratio of the two materials.« less

Authors:
; ; ; ;  [1]; ; ;  [2]; ;  [3]
  1. Tohoku University Graduate School of Medicine, Sendai, Miyagi (Japan)
  2. Tohoku University Hospital, Sendai, Miyagi (Japan)
  3. Tohoku University, Sendai, Miyagi (Japan)
Publication Date:
OSTI Identifier:
22626790
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; CORRELATIONS; IMAGE PROCESSING; IMAGES; LAPLACIAN; MORPHOLOGY; NMR IMAGING; RADIOTHERAPY; SKELETON; THICKNESS

Citation Formats

Ito, K, Kadoya, N, Chiba, M, Matsushita, H, Jingu, K, Sato, K, Nagasaka, T, Yamanaka, K, Dobashi, S, and Takeda, K. SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy. United States: N. p., 2016. Web. doi:10.1118/1.4955852.
Ito, K, Kadoya, N, Chiba, M, Matsushita, H, Jingu, K, Sato, K, Nagasaka, T, Yamanaka, K, Dobashi, S, & Takeda, K. SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy. United States. doi:10.1118/1.4955852.
Ito, K, Kadoya, N, Chiba, M, Matsushita, H, Jingu, K, Sato, K, Nagasaka, T, Yamanaka, K, Dobashi, S, and Takeda, K. Wed . "SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy". United States. doi:10.1118/1.4955852.
@article{osti_22626790,
title = {SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy},
author = {Ito, K and Kadoya, N and Chiba, M and Matsushita, H and Jingu, K and Sato, K and Nagasaka, T and Yamanaka, K and Dobashi, S and Takeda, K},
abstractNote = {Purpose: The aim of this study is to develop radiation treatment planning using magnetic susceptibility obtained from quantitative susceptibility mapping (QSM) via MR imaging. This study demonstrates the feasibility of a method for generating a substitute for a CT image from an MRI. Methods: The head of a healthy volunteer was scanned using a CT scanner and a 3.0 T MRI scanner. The CT imaging was performed with a slice thickness of 2.5 mm at 80 and 120 kV (dual-energy scan). These CT images were converted to relative electron density (rED) using the CT-rED conversion table generated by a previous dual-energy CT scan. The CT-rED conversion table was generated using the conversion of the energy-subtracted CT number to rED via a single linear relationship. One T2 star-weighted 3D gradient echo-based sequence with four different echo times images was acquired using the MRI scanner. These T2 star-weighted images were used to estimate the phase data. To estimate the local field map, a Laplacian unwrapping of the phase and background field removal algorithm were implemented to process phase data. To generate a magnetic susceptibility map from the local field map, we used morphology enabled dipole inversion method. The rED map was resampled to the same resolution as magnetic susceptibility, and the magnetic susceptibility-rED conversion table was obtained via voxel-by-voxel mapping between the magnetic susceptibility and rED maps. Results: A correlation between magnetic susceptibility and rED is not observed through our method. Conclusion: Our results show that the correlation between magnetic susceptibility and rED is not observed. As the next step, we assume that the voxel of the magnetic susceptibility map comprises two materials, such as water (0 ppm) and bone (-2.2 ppm) or water and marrow (0.81ppm). The elements of each voxel were estimated from the ratio of the two materials.},
doi = {10.1118/1.4955852},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To develop a CBCT HU correction method using a patient specific HU to mass density conversion curve based on a novel image registration and organ mapping method for head-and-neck radiation therapy. Methods: There are three steps to generate a patient specific CBCT HU to mass density conversion curve. First, we developed a novel robust image registration method based on sparseness analysis to register the planning CT (PCT) and the CBCT. Second, a novel organ mapping method was developed to transfer the organs at risk (OAR) contours from the PCT to the CBCT and corresponding mean HU values of eachmore » OAR were measured in both the PCT and CBCT volumes. Third, a set of PCT and CBCT HU to mass density conversion curves were created based on the mean HU values of OARs and the corresponding mass density of the OAR in the PCT. Then, we compared our proposed conversion curve with the traditional Catphan phantom based CBCT HU to mass density calibration curve. Both curves were input into the treatment planning system (TPS) for dose calculation. Last, the PTV and OAR doses, DVH and dose distributions of CBCT plans are compared to the original treatment plan. Results: One head-and-neck cases which contained a pair of PCT and CBCT was used. The dose differences between the PCT and CBCT plans using the proposed method are −1.33% for the mean PTV, 0.06% for PTV D95%, and −0.56% for the left neck. The dose differences between plans of PCT and CBCT corrected using the CATPhan based method are −4.39% for mean PTV, 4.07% for PTV D95%, and −2.01% for the left neck. Conclusion: The proposed CBCT HU correction method achieves better agreement with the original treatment plan compared to the traditional CATPhan based calibration method.« less
  • Purpose: In proton therapy, the relative biological effectiveness (RBE) – compared with conventional photon therapy – is routinely set to 1.1. However, experimental in vitro studies indicate evidence for the variability of the RBE. To clarify the impact on patient treatment, investigation of the RBE in a preclinical case study should be performed. Methods: The Monte Carlo software TOPAS was used to simulate the radiation field of an irradiation setup at the experimental beamline of the proton therapy facility (OncoRay) in Dresden, Germany. Simulations were performed on cone beam CT-data (CBCT) of a xenogeneous mouse with an orthotopic lung carcinomamore » obtained by an in-house developed small animal image-guided radiotherapy device. A homogeneous physical fraction dose of 1.8Gy was prescribed for the contoured tumor volume. Simulated dose and linear energy transfer distributions were used to estimate RBE values in the mouse based on an RBE model by Wedenberg et al. To characterize radiation sensitivity of normal and tumor tissue, α/β-ratios were taken from the literature for NB1RGB (10.1Gy) and human squamous lung cancer (6.2Gy) cell lines, respectively. Results: Good dose coverage of the target volume was achieved with a spread-out Bragg peak (SOBP). The contra-lateral lung was completely spared from receiving radiation. An increase in RBE towards the distal end of the SOBP from 1.07 to 1.35 and from 1.05 to 1.3 was observed when considering normal tissue and tumor, respectively, with the highest RBE values located distal to the target volume. Conclusion: Modeled RBE values simulated on CBCT for experimental preclinical proton therapy varied with tissue type and depth in a mouse and differed therefore from a constant value of 1.1. Further translational work will include, first, conducting preclinical experiments and, second, analogous RBE studies in patients using experimentally verified simulation settings for our clinically used patient-specific beam conforming technique.« less
  • Purpose: To investigate the feasibility of using multifunctional Fe{sub 3}O{sub 4}/TaOx(core / shell) nano particles developed for CT and MRI contrast agent as dose enhancing radiosensitizers. Methods: Firstly, to verify the imaging detectability of Fe{sub 3}O{sub 4}/TaOx nano particles, in-vivo tests were conducted. Approximately 600 mg/kg of 19 nm diameter Fe{sub 3}O{sub 4}/TaOx nano particles dispersed in phosphate buffered saline(PBS) were injected to ten nude Balb/c mice through the tail vein. Difference between pre- and post-injection images was analyzed by computing the pixel histogram and correlation coefficient factor using MATLAB in the user defined ROI. Secondly, to quantify the potentialmore » therapeutic enhancement with nano materials, DER (Dose Enhancement Ratio) and number of SER (Secondary Electron Ratio) were computed using TOPAS(ver.2.0 P-03) MC simulation. Results: In CT, MRI imaging, the aorta, the blood vessel, and the liver were clearly visualized after intravenous injection of Fe{sub 3}O{sub 4}/TaOx nano particles. There was large different between pre and post-injection images of Histogram data and Coefficients of correlation factor in CT and MR are 0.006, 0.060, respectively. When 70 MeV protons were irradiated for a Gold, Tantalum, TaOx, Fe{sub 3}O{sub 4}/TaOx, Fe{sub 3}O{sub 4} nano particle, DER was 2.59, 2.41, 1.68, 1.54 and 1.36 respectively. Similarly, SER increment was 2.31, 2.15, 1.56, 1.46, and 1.27 for Gold, Tantalum, TaOx, Fe{sub 3}O{sub 4}/TaOx, Fe{sub 3}O{sub 4} nano particle, respectively. Conclusion: Fe{sub 3}O{sub 4}/TaOx nano particles have potential as a multifunctional agent which enhances the accuracy in cancer detection through visualization of developed tumor lesion and increases the therapeutic effect in proton therapy. The dose enhancement with Fe{sub 3}O{sub 4}/TaOx was estimated as half of the Gold. However, tumor targeting such as combined with magnetic field may overcome the low DER. This research was supported by the NRF funded by the Ministry of Science, ICT & Future Planning (2012M3A9B6055201 and 2012R1A1A2042414), Samsung Medical Center grant[GFO1130081].« less
  • Purpose: To determine the suitability of dual-energy CT (DECT) to calculate relative electron density (RED) of tissues for accurate proton therapy dose calculation. Methods: DECT images of RED tissue surrogates were acquired at 80 and 140 kVp. Samples (RED=0.19−2.41) were imaged in a water-equivalent phantom in a variety of configurations. REDs were calculated using the DECT numbers and inputs of the high and low energy spectral weightings. DECT-derived RED was compared between geometric configurations and for variations in the spectral inputs to assess the sensitivity of RED accuracy versus expected values. Results: RED accuracy was dependent on accurate spectral inputmore » influenced by phantom thickness and radius from the phantom center. Material samples located at the center of the phantom generally showed the best agreement to reference RED values, but only when attenuation of the surrounding phantom thickness was accounted for in the calculation spectra. Calculated RED changed by up to 10% for some materials when the sample was located at an 11 cm radius from the phantom center. Calculated REDs under the best conditions still differed from reference values by up to 5% in bone and 14% in lung. Conclusion: DECT has previously been used to differentiate tissue types based on RED and Z for binary tissue-type segmentation. To improve upon the current standard of empirical conversion of CT number to RED for treatment planning dose calculation, DECT methods must be able to calculate RED to better than 3% accuracy throughout the image. The DECT method is sensitive to the accuracy of spectral inputs used for calculation, as well as to spatial position in the anatomy. Effort to address adjustments to the spectral calculation inputs based on position and phantom attenuation will be required before DECT-determined RED can achieve a consistent level of accuracy for application in dose calculation.« less
  • Purpose: Validation of iBEAM™ evo couch-top for different relative electron density (RED) combination during photon beam dose calculation in Monaco− TPS. Methods: The iBEAM™ evo couch-top has two layers:outer carbon fiber (CF) and inner foam core (FC). To study the beam intensity attenuation of couch-top, measured doses were compared with doses calculated for different REDs. Measurements were performed in solid water phantom with PTW-0.125cc ion-chamber positioned at center of the phantom with 5.3cm thickness slabs placed above and below the chamber. Similarly, in TPS, iBEAM™ evo couch-top was simulated and doses were calculated for different RED combinations (0.2CF-0.2FC, 0.4CF-0.2FC, 0.6CF-0.2FC,more » 0.8CF-0.2FC, and 1.0CF-0.2FC) by using Monte Carlo dose calculation algorithm in Monaco TPS (V5.1). Doses were measured for every 10 degree gantry angle separation, 10×10cm{sup 2} field size and 6MV photons. Then, attenuation is defined as the ratio of output at posterior gantry angle to output of its opposed anterior gantry angle (e.g.225°/45°). output fluctuation with different gantry angle was within ±0.21%. To confirm above results, dose-planes were measured for five pelvic VMAT plans (360°arc) in PTW two-dimensional array and compared with different calculated dose-planes of above-mentioned couch REDs. Gamma pass rates<1.00) were analyzed for 3%/2mm criteria. Results: Measured and calculated attenuation was in good agreement for the RED combination of 0.2CF-0.2FC and difference was within ±0.515%. However, other density combination showed difference of ±0.9841%, ±1.667%, ±2.9241% and ±2.8832% for 0.4CF-0.2FC, 0.6CF-0.2FC, 0.8CF-0.2FC, and 1.0CF-0.2FC, respectively. Maximum couch-top attenuation was observed at 110°–120° and 240°–250° and decreases linearly as the gantry angle approaches 180°. Moreover, gamma pass rate confirmed the above results and showed maximum pass rate of 96.23% for 0.2CF-0.2FC, whereas others were 95.72%, 95.12%, 94.31% and 93.24%. Conclusion: RED value of 0.2CF-0.2FC was found to be suitable for accurate couch-top modeling for 6MV photon beam Monte Carlo calculations in Monaco TPS.« less