skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging

Abstract

Purpose: Multiparametric radiological imaging is used for diagnosis in patients. Potentially extracting useful features specific to a patient’s pathology would be crucial step towards personalized medicine and assessing treatment options. In order to automatically extract features directly from multiparametric radiological imaging datasets, we developed an advanced unsupervised machine learning algorithm called the multidimensional imaging radiomics-geodesics(MIRaGe). Methods: Seventy-six breast tumor patients underwent 3T MRI breast imaging were used for this study. We tested the MIRaGe algorithm to extract features for classification of breast tumors into benign or malignant. The MRI parameters used were T1-weighted, T2-weighted, dynamic contrast enhanced MR imaging (DCE-MRI) and diffusion weighted imaging(DWI). The MIRaGe algorithm extracted the radiomics-geodesics features (RGFs) from multiparametric MRI datasets. This enable our method to learn the intrinsic manifold representations corresponding to the patients. To determine the informative RGF, a modified Isomap algorithm(t-Isomap) was created for a radiomics-geodesics feature space(tRGFS) to avoid overfitting. Final classification was performed using SVM. The predictive power of the RGFs was tested and validated using k-fold cross validation. Results: The RGFs extracted by the MIRaGe algorithm successfully classified malignant lesions from benign lesions with a sensitivity of 93% and a specificity of 91%. The top 50 RGFs identified asmore » the most predictive by the t-Isomap procedure were consistent with the radiological parameters known to be associated with breast cancer diagnosis and were categorized as kinetic curve characterizing RGFs, wash-in rate characterizing RGFs, wash-out rate characterizing RGFs and morphology characterizing RGFs. Conclusion: In this paper, we developed a novel feature extraction algorithm for multiparametric radiological imaging. The results demonstrated the power of the MIRaGe algorithm at automatically discovering useful feature representations directly from the raw multiparametric MRI data. In conclusion, the MIRaGe informatics model provides a powerful tool with applicability in cancer diagnosis and a possibility of extension to other kinds of pathologies. NIH (P50CA103175, 5P30CA006973 (IRAT), R01CA190299, U01CA140204), Siemens Medical Systems (JHU-2012-MR-86-01) and Nivida Graphics Corporation.« less

Authors:
 [1];  [2]
  1. The Johns Hopkins University, Computer Science. Baltimore, MD (United States)
  2. The Johns Hopkins University School of Medicine, Dept of Radiology and Oncology. Baltimore, MD (United States)
Publication Date:
OSTI Identifier:
22626733
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; BIOMEDICAL RADIOGRAPHY; DATASETS; DIAGNOSIS; DRUGS; EXTRACTION; GEODESICS; LEARNING; MAMMARY GLANDS; MORPHOLOGY; NEOPLASMS; NMR IMAGING; PATHOLOGY; PATIENTS; SENSITIVITY; SPECIFICITY; VALIDATION

Citation Formats

Parekh, V, and Jacobs, MA. SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging. United States: N. p., 2016. Web. doi:10.1118/1.4955777.
Parekh, V, & Jacobs, MA. SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging. United States. doi:10.1118/1.4955777.
Parekh, V, and Jacobs, MA. Wed . "SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging". United States. doi:10.1118/1.4955777.
@article{osti_22626733,
title = {SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging},
author = {Parekh, V and Jacobs, MA},
abstractNote = {Purpose: Multiparametric radiological imaging is used for diagnosis in patients. Potentially extracting useful features specific to a patient’s pathology would be crucial step towards personalized medicine and assessing treatment options. In order to automatically extract features directly from multiparametric radiological imaging datasets, we developed an advanced unsupervised machine learning algorithm called the multidimensional imaging radiomics-geodesics(MIRaGe). Methods: Seventy-six breast tumor patients underwent 3T MRI breast imaging were used for this study. We tested the MIRaGe algorithm to extract features for classification of breast tumors into benign or malignant. The MRI parameters used were T1-weighted, T2-weighted, dynamic contrast enhanced MR imaging (DCE-MRI) and diffusion weighted imaging(DWI). The MIRaGe algorithm extracted the radiomics-geodesics features (RGFs) from multiparametric MRI datasets. This enable our method to learn the intrinsic manifold representations corresponding to the patients. To determine the informative RGF, a modified Isomap algorithm(t-Isomap) was created for a radiomics-geodesics feature space(tRGFS) to avoid overfitting. Final classification was performed using SVM. The predictive power of the RGFs was tested and validated using k-fold cross validation. Results: The RGFs extracted by the MIRaGe algorithm successfully classified malignant lesions from benign lesions with a sensitivity of 93% and a specificity of 91%. The top 50 RGFs identified as the most predictive by the t-Isomap procedure were consistent with the radiological parameters known to be associated with breast cancer diagnosis and were categorized as kinetic curve characterizing RGFs, wash-in rate characterizing RGFs, wash-out rate characterizing RGFs and morphology characterizing RGFs. Conclusion: In this paper, we developed a novel feature extraction algorithm for multiparametric radiological imaging. The results demonstrated the power of the MIRaGe algorithm at automatically discovering useful feature representations directly from the raw multiparametric MRI data. In conclusion, the MIRaGe informatics model provides a powerful tool with applicability in cancer diagnosis and a possibility of extension to other kinds of pathologies. NIH (P50CA103175, 5P30CA006973 (IRAT), R01CA190299, U01CA140204), Siemens Medical Systems (JHU-2012-MR-86-01) and Nivida Graphics Corporation.},
doi = {10.1118/1.4955777},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To test the potential of early Glioblastoma Multiforme (GBM) recurrence detection utilizing image texture pattern analysis in serial MR images post primary treatment intervention. Methods: MR image-sets of six time points prior to the confirmed recurrence diagnosis of a GBM patient were included in this study, with each time point containing T1 pre-contrast, T1 post-contrast, T2-Flair, and T2-TSE images. Eight Gray-level co-occurrence matrix (GLCM) texture features including Contrast, Correlation, Dissimilarity, Energy, Entropy, Homogeneity, Sum-Average, and Variance were calculated from all images, resulting in a total of 32 features at each time point. A confirmed recurrent volume was contoured, alongmore » with an adjacent non-recurrent region-of-interest (ROI) and both volumes were propagated to all prior time points via deformable image registration. A support vector machine (SVM) with radial-basis-function kernels was trained on the latest time point prior to the confirmed recurrence to construct a model for recurrence classification. The SVM model was then applied to all prior time points and the volumes classified as recurrence were obtained. Results: An increase in classified volume was observed over time as expected. The size of classified recurrence maintained at a stable level of approximately 0.1 cm{sup 3} up to 272 days prior to confirmation. Noticeable volume increase to 0.44 cm{sup 3} was demonstrated at 96 days prior, followed by significant increase to 1.57 cm{sup 3} at 42 days prior. Visualization of the classified volume shows the merging of recurrence-susceptible region as the volume change became noticeable. Conclusion: Image texture pattern analysis in serial MR images appears to be sensitive to detecting the recurrent GBM a long time before the recurrence is confirmed by a radiologist. The early detection may improve the efficacy of targeted intervention including radiosurgery. More patient cases will be included to create a generalizable classification model applicable to a larger patient cohort. NIH R43CA183390 and R01CA188300.NSF Graduate Research Fellowship DGE-1144087.« less
  • Purpose: To develop a quantitative radiomics approach for survival prediction of glioblastoma (GBM) patients treated with chemoradiotherapy (CRT). Methods: 28 GBM patients who received CRT at our institution were retrospectively studied. 255 radiomic features were extracted from 3 gadolinium-enhanced T1 weighted MRIs for 2 regions of interest (ROIs) (the surgical cavity and its surrounding enhancement rim). The 3 MRIs were at pre-treatment, 1-month and 3-month post-CRT. The imaging features comprehensively quantified the intensity, spatial variation (texture), geometric property and their spatial-temporal changes for the 2 ROIs. 3 demographics features (age, race, gender) and 12 clinical parameters (KPS, extent of resection,more » whether concurrent temozolomide was adjusted/stopped and radiotherapy related information) were also included. 4 Machine learning models (logistic regression (LR), support vector machine (SVM), decision tree (DT), neural network (NN)) were applied to predict overall survival (OS) and progression-free survival (PFS). The number of cases and percentage of cases predicted correctly were collected and AUC (area under the receiver operating characteristic (ROC) curve) were determined after leave-one-out cross-validation. Results: From univariate analysis, 27 features (1 demographic, 1 clinical and 25 imaging) were statistically significant (p<0.05) for both OS and PFS. Two sets of features (each contained 24 features) were algorithmically selected from all features to predict OS and PFS. High prediction accuracy of OS was achieved by using NN (96%, 27 of 28 cases were correctly predicted, AUC = 0.99), LR (93%, 26 of 28 cases were correctly predicted, AUC = 0.95) and SVM (93%, 26 of 28 cases were correctly predicted, AUC = 0.90). When predicting PFS, NN obtained the highest prediction accuracy (89%, 25 of 28 cases were correctly predicted, AUC = 0.92). Conclusion: Radiomics approach combined with patients’ demographics and clinical parameters can accurately predict survival in GBM patients treated with CRT.« less
  • Purpose: Patients diagnosed with early stage lung cancer have favorable outcomes when treated with surgery or stereotactic radiotherapy. However, a significant proportion (∼20%) of patients will develop metastatic disease and eventually die of the disease. The purpose of this work is to identify quantitative imaging biomarkers from CT for predicting overall survival in early stage lung cancer. Methods: In this institutional review board-approved HIPPA-compliant retrospective study, we retrospectively analyzed the diagnostic CT scans of 110 patients with early stage lung cancer. Data from 70 patients were used for training/discovery purposes, while those of remaining 40 patients were used for independentmore » validation. We extracted 191 radiomic features, including statistical, histogram, morphological, and texture features. Cox proportional hazard regression model, coupled with the least absolute shrinkage and selection operator (LASSO), was used to predict overall survival based on the radiomic features. Results: The optimal prognostic model included three image features from the Law’s feature and wavelet texture. In the discovery cohort, this model achieved a concordance index or CI=0.67, and it separated the low-risk from high-risk groups in predicting overall survival (hazard ratio=2.72, log-rank p=0.007). In the independent validation cohort, this radiomic signature achieved a CI=0.62, and significantly stratified the low-risk and high-risk groups in terms of overall survival (hazard ratio=2.20, log-rank p=0.042). Conclusion: We identified CT imaging characteristics associated with overall survival in early stage lung cancer. If prospectively validated, this could potentially help identify high-risk patients who might benefit from adjuvant systemic therapy.« less
  • Purpose: Patient safety hazards such as a wrong patient/site getting treated can lead to catastrophic results. The purpose of this project is to automatically detect potential patient safety hazards during the radiotherapy setup and alert the therapist before the treatment is initiated. Methods: We employed a set of co-located and co-registered 3D cameras placed inside the treatment room. Each camera provided a point-cloud of fraxels (fragment pixels with 3D depth information). Each of the cameras were calibrated using a custom-built calibration target to provide 3D information with less than 2 mm error in the 500 mm neighborhood around the isocenter.more » To identify potential patient safety hazards, the treatment room components and the patient’s body needed to be identified and tracked in real-time. For feature recognition purposes, we used a graph-cut based feature recognition with principal component analysis (PCA) based feature-to-object correlation to segment the objects in real-time. Changes in the object’s position were tracked using the CamShift algorithm. The 3D object information was then stored for each classified object (e.g. gantry, couch). A deep learning framework was then used to analyze all the classified objects in both 2D and 3D and was then used to fine-tune a convolutional network for object recognition. The number of network layers were optimized to identify the tracked objects with >95% accuracy. Results: Our systematic analyses showed that, the system was effectively able to recognize wrong patient setups and wrong patient accessories. The combined usage of 2D camera information (color + depth) enabled a topology-preserving approach to verify patient safety hazards in an automatic manner and even in scenarios where the depth information is partially available. Conclusion: By utilizing the 3D cameras inside the treatment room and a deep learning based image classification, potential patient safety hazards can be effectively avoided.« less
  • Purpose: To identify PET-based radiomics features associated with high refractory/relapsed disease risk for Hodgkin lymphoma patients. Methods: A total of 251 Hodgkin lymphoma patients including 19 primary refractory and 9 relapsed patients were investigated. All patients underwent an initial pre-treatment diagnostic FDG PET/CT scan. All cancerous lymph node regions (ROIs) were delineated by an experienced physician based on thresholding each volume of disease in the anatomical regions to SUV>2.5. We extracted 122 image features and evaluated the effect of ROI selection (the largest ROI, the ROI with highest mean SUV, merged ROI, and a single anatomic region [e.g. mediastinum]) onmore » classification accuracy. Random forest was used as a classifier and ROC analysis was used to assess the relationship between selected features and patient’s outcome status. Results: Each patient had between 1 and 9 separate ROIs, with much intra-patient variability in PET features. The best model, which used features from a single anatomic region (the mediastinal ROI, only volumes>5cc: 169 patients with 12 primary refractory) had a classification accuracy of 80.5% for primary refractory disease. The top five features, based on Gini index, consist of shape features (max 3D-diameter and volume) and texture features (correlation and information measure of correlation1&2). In the ROC analysis, sensitivity and specificity of the best model were 0.92 and 0.80, respectively. The area under the ROC (AUC) and the accuracy were 0.86 and 0.86, respectively. The classification accuracy was less than 60% for other ROI models or when ROIs less than 5cc were included. Conclusion: This study showed that PET-based radiomics features from the mediastinal lymph region are associated with primary refractory disease and therefore may play an important role in predicting outcomes in Hodgkin lymphoma patients. These features could be additive beyond baseline tumor and clinical characteristics, and may warrant more aggressive treatment.« less