skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging

Abstract

Purpose: Multiparametric radiological imaging is used for diagnosis in patients. Potentially extracting useful features specific to a patient’s pathology would be crucial step towards personalized medicine and assessing treatment options. In order to automatically extract features directly from multiparametric radiological imaging datasets, we developed an advanced unsupervised machine learning algorithm called the multidimensional imaging radiomics-geodesics(MIRaGe). Methods: Seventy-six breast tumor patients underwent 3T MRI breast imaging were used for this study. We tested the MIRaGe algorithm to extract features for classification of breast tumors into benign or malignant. The MRI parameters used were T1-weighted, T2-weighted, dynamic contrast enhanced MR imaging (DCE-MRI) and diffusion weighted imaging(DWI). The MIRaGe algorithm extracted the radiomics-geodesics features (RGFs) from multiparametric MRI datasets. This enable our method to learn the intrinsic manifold representations corresponding to the patients. To determine the informative RGF, a modified Isomap algorithm(t-Isomap) was created for a radiomics-geodesics feature space(tRGFS) to avoid overfitting. Final classification was performed using SVM. The predictive power of the RGFs was tested and validated using k-fold cross validation. Results: The RGFs extracted by the MIRaGe algorithm successfully classified malignant lesions from benign lesions with a sensitivity of 93% and a specificity of 91%. The top 50 RGFs identified asmore » the most predictive by the t-Isomap procedure were consistent with the radiological parameters known to be associated with breast cancer diagnosis and were categorized as kinetic curve characterizing RGFs, wash-in rate characterizing RGFs, wash-out rate characterizing RGFs and morphology characterizing RGFs. Conclusion: In this paper, we developed a novel feature extraction algorithm for multiparametric radiological imaging. The results demonstrated the power of the MIRaGe algorithm at automatically discovering useful feature representations directly from the raw multiparametric MRI data. In conclusion, the MIRaGe informatics model provides a powerful tool with applicability in cancer diagnosis and a possibility of extension to other kinds of pathologies. NIH (P50CA103175, 5P30CA006973 (IRAT), R01CA190299, U01CA140204), Siemens Medical Systems (JHU-2012-MR-86-01) and Nivida Graphics Corporation.« less

Authors:
 [1];  [2]
  1. The Johns Hopkins University, Computer Science. Baltimore, MD (United States)
  2. The Johns Hopkins University School of Medicine, Dept of Radiology and Oncology. Baltimore, MD (United States)
Publication Date:
OSTI Identifier:
22626733
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; BIOMEDICAL RADIOGRAPHY; DATASETS; DIAGNOSIS; DRUGS; EXTRACTION; GEODESICS; LEARNING; MAMMARY GLANDS; MORPHOLOGY; NEOPLASMS; NMR IMAGING; PATHOLOGY; PATIENTS; SENSITIVITY; SPECIFICITY; VALIDATION

Citation Formats

Parekh, V, and Jacobs, MA. SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging. United States: N. p., 2016. Web. doi:10.1118/1.4955777.
Parekh, V, & Jacobs, MA. SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging. United States. doi:10.1118/1.4955777.
Parekh, V, and Jacobs, MA. 2016. "SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging". United States. doi:10.1118/1.4955777.
@article{osti_22626733,
title = {SU-F-R-05: Multidimensional Imaging Radiomics-Geodesics: A Novel Manifold Learning Based Automatic Feature Extraction Method for Diagnostic Prediction in Multiparametric Imaging},
author = {Parekh, V and Jacobs, MA},
abstractNote = {Purpose: Multiparametric radiological imaging is used for diagnosis in patients. Potentially extracting useful features specific to a patient’s pathology would be crucial step towards personalized medicine and assessing treatment options. In order to automatically extract features directly from multiparametric radiological imaging datasets, we developed an advanced unsupervised machine learning algorithm called the multidimensional imaging radiomics-geodesics(MIRaGe). Methods: Seventy-six breast tumor patients underwent 3T MRI breast imaging were used for this study. We tested the MIRaGe algorithm to extract features for classification of breast tumors into benign or malignant. The MRI parameters used were T1-weighted, T2-weighted, dynamic contrast enhanced MR imaging (DCE-MRI) and diffusion weighted imaging(DWI). The MIRaGe algorithm extracted the radiomics-geodesics features (RGFs) from multiparametric MRI datasets. This enable our method to learn the intrinsic manifold representations corresponding to the patients. To determine the informative RGF, a modified Isomap algorithm(t-Isomap) was created for a radiomics-geodesics feature space(tRGFS) to avoid overfitting. Final classification was performed using SVM. The predictive power of the RGFs was tested and validated using k-fold cross validation. Results: The RGFs extracted by the MIRaGe algorithm successfully classified malignant lesions from benign lesions with a sensitivity of 93% and a specificity of 91%. The top 50 RGFs identified as the most predictive by the t-Isomap procedure were consistent with the radiological parameters known to be associated with breast cancer diagnosis and were categorized as kinetic curve characterizing RGFs, wash-in rate characterizing RGFs, wash-out rate characterizing RGFs and morphology characterizing RGFs. Conclusion: In this paper, we developed a novel feature extraction algorithm for multiparametric radiological imaging. The results demonstrated the power of the MIRaGe algorithm at automatically discovering useful feature representations directly from the raw multiparametric MRI data. In conclusion, the MIRaGe informatics model provides a powerful tool with applicability in cancer diagnosis and a possibility of extension to other kinds of pathologies. NIH (P50CA103175, 5P30CA006973 (IRAT), R01CA190299, U01CA140204), Siemens Medical Systems (JHU-2012-MR-86-01) and Nivida Graphics Corporation.},
doi = {10.1118/1.4955777},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To develop a feature-preserving model based image reconstruction (MBIR) method that improves performance in pancreatic lesion classification at equal or reduced radiation dose. Methods: A set of pancreatic lesion models was created with both benign and premalignant lesion types. These two classes of lesions are distinguished by their fine internal structures; their delineation is therefore crucial to the task of pancreatic lesion classification. To reduce image noise while preserving the features of the lesions, we developed a MBIR method with curvature-based regularization. The novel regularization encourages formation of smooth surfaces that model both the exterior shape and the internalmore » features of pancreatic lesions. Given that the curvature depends on the unknown image, image reconstruction or denoising becomes a non-convex optimization problem; to address this issue an iterative-reweighting scheme was used to calculate and update the curvature using the image from the previous iteration. Evaluation was carried out with insertion of the lesion models into the pancreas of a patient CT image. Results: Visual inspection was used to compare conventional TV regularization with our curvature-based regularization. Several penalty-strengths were considered for TV regularization, all of which resulted in erasing portions of the septation (thin partition) in a premalignant lesion. At matched noise variance (50% noise reduction in the patient stomach region), the connectivity of the septation was well preserved using the proposed curvature-based method. Conclusion: The curvature-based regularization is able to reduce image noise while simultaneously preserving the lesion features. This method could potentially improve task performance for pancreatic lesion classification at equal or reduced radiation dose. The result is of high significance for longitudinal surveillance studies of patients with pancreatic cysts, which may develop into pancreatic cancer. The Senior Author receives financial support from Siemens GmbH Healthcare.« less
  • Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were usedmore » in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was 63%(0.13 to 0.04;p<0.05). The Dice similarity was in breast 8%(0.91 to 0.99) and for prostate was 89%(0.01 to 0.90;p<0.05) Conclusion: Our 3D wavelet hybrid registration approach registered diverse breast and prostate data of different radiological images(MR/PET/CT) with a high accuracy.« less
  • Purpose: Radiomics have shown potential for predicting treatment outcomes in several body sites. This study investigated the correlation between PET Radiomics features and treatment response of cervical cancer outcomes. Methods: our dataset consisted of a cohort of 79 patients diagnosed with cervical cancer, FIGO stage IB-IVA, age range 25–86 years, (median age at diagnosis: 50 years) all treated between: 2009–14 with external beam radiation therapy to a dose range between: 45–50.4 Gy (median= 45 Gy), concurrent cisplatin chemotherapy and MRI-based brachytherapy to a dose of 20–30 Gy (median= 28 Gy). Metabolic Tumor Volume (MTV) in patient’s primary site was delineatedmore » on pretreatment PET/CT by two board certified Radiation Oncologists. The features extracted from each patient’s volume were: 26 Co-occurrence matrix (COM) Feature, 11 Run-Length Matrix (RLM), 11 Gray Level Size Zone Matrix (GLSZM) and 33 Intensity-based features (IBF). The treatment outcome was divided based on the last follow up status into three classes: No Evidence of Disease (NED), Alive with Disease (AWD) and Dead of Disease (DOD). The ability for the radiomics features to differentiate between the 3 treatments outcome categories were assessed by One-Way ANOVA test with p-value < 0.05 was to be statistically significant. The results from the analysis were compared with the ones obtained previously for standard Uptake Value (SUV). Results: Based on patients last clinical follow-up; 52 showed NED, 17 AWD and 10 DOD. Radiomics Features were able to classify the patients based on their treatment response. A parallel analysis was done for SUV measurements for comparison. Conclusion: Radiomics features were able to differentiate between the three different classes of treatment outcomes. However, most of the features were only able to differentiate between NED and DOD class. Also, The ability or radiomics features to differentiate types of response were more significant than SUV.« less
  • Purpose: To evaluate the tumor clinical characteristics and quantitative multi-parametric MR imaging features for prediction of response to chemo-radiation treatment (CRT) in locally advanced rectal cancer (LARC). Methods: Forty-three consecutive patients (59.7±6.9 years, from 09/2013 – 06/2014) receiving neoadjuvant CRT followed by surgery were enrolled. All underwent MRI including anatomical T1/T2, Dynamic Contrast Enhanced (DCE)-MRI and Diffusion-Weighted MRI (DWI) prior to the treatment. A total of 151 quantitative features, including morphology/Gray Level Co-occurrence Matrix (GLCM) texture from T1/T2, enhancement kinetics and the voxelized distribution from DCE-MRI, apparent diffusion coefficient (ADC) from DWI, along with clinical information (carcinoembryonic antigen CEA level,more » TNM staging etc.), were extracted for each patient. Response groups were separated based on down-staging, good response and pathological complete response (pCR) status. Logistic regression analysis (LRA) was used to select the best predictors to classify different groups and the predictive performance were calculated using receiver operating characteristic (ROC) analysis. Results: Individual imaging category or clinical charateristics might yield certain level of power in assessing the response. However, the combined model outperformed than any category alone in prediction. With selected features as Volume, GLCM AutoCorrelation (T2), MaxEnhancementProbability (DCE-MRI), and MeanADC (DWI), the down-staging prediciton accuracy (area under the ROC curve, AUC) could be 0.95, better than individual tumor metrics with AUC from 0.53–0.85. While for the pCR prediction, the best set included CEA (clinical charateristics), Homogeneity (DCE-MRI) and MeanADC (DWI) with an AUC of 0.89, more favorable compared to conventional tumor metrics with an AUC ranging from 0.511–0.79. Conclusion: Through a systematic analysis of multi-parametric MR imaging features, we are able to build models with improved predictive value over conventional imaging or clinical metrics. This is encouraging, suggesting the wealth of imaging radiomics should be further explored to help tailor the treatment into the era of personalized medicine. This work is supported by the National Science Foundation of China (NSFC Grant No. 81201091), National High Technology Research and Development Program of China (863 program, Grant No. 2015AA020917), and Fund Project for Excellent Abroad Scholar Personnel in Science and Technology.« less
  • Purpose: Pilot study developing a CT-texture based model for early assessment of treatment response during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Methods: Daily CT data acquired for 24 pancreatic head cancer patients using CT-on-rails, during the routine CT-guided CRT delivery with a radiation dose of 50.4 Gy in 28 fractions, were analyzed. The pancreas head was contoured on each daily CT. Texture analysis was performed within the pancreas head contour using a research tool (IBEX). Over 1300 texture metrics including: grey level co-occurrence, run-length, histogram, neighborhood intensity difference, and geometrical shape features were calculated for each dailymore » CT. Metric-trend information was established by finding the best fit of either a linear, quadratic, or exponential function for each metric value verses accumulated dose. Thus all the daily CT texture information was consolidated into a best-fit trend type for a given patient and texture metric. Linear correlation was performed between the patient histological response vector (good, medium, poor) and all combinations of 23 patient subgroups (statistical jackknife) determining which metrics were most correlated to response and repeatedly reliable across most patients. Control correlations against CT scanner, reconstruction kernel, and gated/nongated CT images were also calculated. Euclidean distance measure was used to group/sort patient vectors based on the data of these trend-response metrics. Results: We found four specific trend-metrics (Gray Level Coocurence Matrix311-1InverseDiffMomentNorm, Gray Level Coocurence Matrix311-1InverseDiffNorm, Gray Level Coocurence Matrix311-1 Homogeneity2, and Intensity Direct Local StdMean) that were highly correlated with patient response and repeatedly reliable. Our four trend-metric model successfully ordered our pilot response dataset (p=0.00070). We found no significant correlation to our control parameters: gating (p=0.7717), scanner (p=0.9741), and kernel (p=0.8586). Conclusion: We have successfully created a CT-texture based early treatment response prediction model using the CTs acquired during the delivery of chemoradiation therapy for pancreatic cancer. Future testing is required to validate the model with more patient data.« less