skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-R-01: Preclinical Radioimmunogenomics Study to Design Personalized Radiotherapy

Abstract

Purpose: Radiogenomics is an active area of research to find clinical correlation between genomics and radiotherapy outcomes. In this era, many different biological issues should be taken into account. In this study we aimed to introduce “Radioimmunogenomics” as a new approach to study immunogetics issue regard to radiotherapy induced clinical manifestations. Methods: We studied different immunological pathways and signaling molecules which underling radiation response of normal and malignant tissues. In the other hand, we found many genes and proteins are responsible to radiation effects on biological tissues. We defined a theoretical framework to correlate these genes with radiotherapy outcomes as TCP and NTCP biological dose tools. Results: Our theoretical results showed, high-throughput immunogenomics biomarkers can be correlated with radiotherapy outcomes. Genes regarding to inflammation, apoptosis, repair molecules and many other immunological markers can be defined as radioimmune markers to predict radiotherapy response. Conclusion: Radioimmunogenomics can be used as a new personalized radiotherapy research area to enhance treatment outcome as well as quality of life.

Authors:
 [1]
  1. Iran University of Medical Sciences, Tehran, Iran, Tehran, Tehran (Iran, Islamic Republic of)
Publication Date:
OSTI Identifier:
22626731
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ANIMAL TISSUES; APOPTOSIS; BIOLOGICAL MARKERS; BIOLOGICAL RADIATION EFFECTS; BIOLOGICAL REPAIR; CORRELATIONS; GENES; INFLAMMATION; MOLECULES; PROTEINS; RADIATION DOSES; RADIOTHERAPY; STANDARD OF LIVING; TCP

Citation Formats

Abdollahi, H. SU-F-R-01: Preclinical Radioimmunogenomics Study to Design Personalized Radiotherapy. United States: N. p., 2016. Web. doi:10.1118/1.4955773.
Abdollahi, H. SU-F-R-01: Preclinical Radioimmunogenomics Study to Design Personalized Radiotherapy. United States. doi:10.1118/1.4955773.
Abdollahi, H. 2016. "SU-F-R-01: Preclinical Radioimmunogenomics Study to Design Personalized Radiotherapy". United States. doi:10.1118/1.4955773.
@article{osti_22626731,
title = {SU-F-R-01: Preclinical Radioimmunogenomics Study to Design Personalized Radiotherapy},
author = {Abdollahi, H},
abstractNote = {Purpose: Radiogenomics is an active area of research to find clinical correlation between genomics and radiotherapy outcomes. In this era, many different biological issues should be taken into account. In this study we aimed to introduce “Radioimmunogenomics” as a new approach to study immunogetics issue regard to radiotherapy induced clinical manifestations. Methods: We studied different immunological pathways and signaling molecules which underling radiation response of normal and malignant tissues. In the other hand, we found many genes and proteins are responsible to radiation effects on biological tissues. We defined a theoretical framework to correlate these genes with radiotherapy outcomes as TCP and NTCP biological dose tools. Results: Our theoretical results showed, high-throughput immunogenomics biomarkers can be correlated with radiotherapy outcomes. Genes regarding to inflammation, apoptosis, repair molecules and many other immunological markers can be defined as radioimmune markers to predict radiotherapy response. Conclusion: Radioimmunogenomics can be used as a new personalized radiotherapy research area to enhance treatment outcome as well as quality of life.},
doi = {10.1118/1.4955773},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To investigate the impact of using spatiotemporal optimization, i.e., intensity-modulated spatial optimization followed by fractionation schedule optimization, to select the patient-specific fractionation schedule that maximizes the tumor biologically equivalent dose (BED) under dose constraints for multiple organs-at-risk (OARs). Methods: Spatiotemporal optimization was applied to a variety of lung tumors in a phantom geometry using a range of tumor sizes and locations. The optimal fractionation schedule for a patient using the linear-quadratic cell survival model depends on the tumor and OAR sensitivity to fraction size (α/β), the effective tumor doubling time (T{sub d}), and the size and location of tumormore » target relative to one or more OARs (dose distribution). The authors used a spatiotemporal optimization method to identify the optimal number of fractions N that maximizes the 3D tumor BED distribution for 16 lung phantom cases. The selection of the optimal fractionation schedule used equivalent (30-fraction) OAR constraints for the heart (D{sub mean} ≤ 45 Gy), lungs (D{sub mean} ≤ 20 Gy), cord (D{sub max} ≤ 45 Gy), esophagus (D{sub max} ≤ 63 Gy), and unspecified tissues (D{sub 05} ≤ 60 Gy). To assess plan quality, the authors compared the minimum, mean, maximum, and D{sub 95} of tumor BED, as well as the equivalent uniform dose (EUD) for optimized plans to conventional intensity-modulated radiation therapy plans prescribing 60 Gy in 30 fractions. A sensitivity analysis was performed to assess the effects of T{sub d} (3–100 days), tumor lag-time (T{sub k} = 0–10 days), and the size of tumors on optimal fractionation schedule. Results: Using an α/β ratio of 10 Gy, the average values of tumor max, min, mean BED, and D{sub 95} were up to 19%, 21%, 20%, and 19% larger than those from conventional prescription, depending on T{sub d} and T{sub k} used. Tumor EUD was up to 17% larger than the conventional prescription. For fast proliferating tumors with T{sub d} less than 10 days, there was no significant increase in tumor BED but the treatment course could be shortened without a loss in tumor BED. The improvement in the tumor mean BED was more pronounced with smaller tumors (p-value = 0.08). Conclusions: Spatiotemporal optimization of patient plans has the potential to significantly improve local tumor control (larger BED/EUD) of patients with a favorable geometry, such as smaller tumors with larger distances between the tumor target and nearby OAR. In patients with a less favorable geometry and for fast growing tumors, plans optimized using spatiotemporal optimization and conventional (spatial-only) optimization are equivalent (negligible differences in tumor BED/EUD). However, spatiotemporal optimization yields shorter treatment courses than conventional spatial-only optimization. Personalized, spatiotemporal optimization of treatment schedules can increase patient convenience and help with the efficient allocation of clinical resources. Spatiotemporal optimization can also help identify a subset of patients that might benefit from nonconventional (large dose per fraction) treatments that are ineligible for the current practice of stereotactic body radiation therapy.« less
  • Purpose: To develop a quantitative method for the estimation of kV cone beam computed tomography (kVCBCT) doses in pediatric patients undergoing image-guided radiotherapy. Methods and Materials: Forty-two children were retrospectively analyzed in subgroups of different scanned regions: one group in the head-and-neck and the other group in the pelvis. Critical structures in planning CT images were delineated on an Eclipse treatment planning system before being converted into CT phantoms for Monte Carlo simulations. A benchmarked EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions of kVCBCT scans with full-fan high-quality head or half-fan pelvis protocols predefined by themore » manufacturer. Based on planning CT images and structures exported in DICOM RT format, occipital-frontal circumferences (OFC) were calculated for head-and-neck patients using DICOMan software. Similarly, hip circumferences (HIP) were acquired for the pelvic group. Correlations between mean organ doses and age, weight, OFC, and HIP values were analyzed with SigmaPlot software suite, where regression performances were analyzed with relative dose differences (RDD) and coefficients of determination (R{sup 2}). Results: kVCBCT-contributed mean doses to all critical structures decreased monotonically with studied parameters, with a steeper decrease in the pelvis than in the head. Empirical functions have been developed for a dose estimation of the major organs at risk in the head and pelvis, respectively. If evaluated with physical parameters other than age, a mean RDD of up to 7.9% was observed for all the structures in our population of 42 patients. Conclusions: kVCBCT doses are highly correlated with patient size. According to this study, weight can be used as a primary index for dose assessment in both head and pelvis scans, while OFC and HIP may serve as secondary indices for dose estimation in corresponding regions. With the proposed empirical functions, it is possible to perform an individualized quantitative dose assessment of kVCBCT scans.« less
  • Purpose: To develop a passive gating system incorporating with the real-time position management (RPM) system for the gated radiotherapy. Methods: Passive breath gating (PBG) equipment, which consists of a breath-hold valve, a controller mechanism, a mouthpiece kit, and a supporting frame, was designed. A commercial real-time positioning management system was implemented to synchronize the target motion and radiation delivery on a linear accelerator with the patient's breathing cycle. The respiratory related target motion was investigated by using the RPM system for correlating the external markers with the internal target motion while using PBG for passively blocking patient's breathing. Six patientsmore » were enrolled in the preclinical feasibility and efficiency study of the PBG system. Results: PBG equipment was designed and fabricated. The PBG can be manually triggered or released to block or unblock patient's breathing. A clinical workflow was outlined to integrate the PBG with the RPM system. After implementing the RPM based PBG system, the breath-hold period can be prolonged to 15-25 s and the treatment delivery efficiency for each field can be improved by 200%-400%. The results from the six patients showed that the diaphragm motion caused by respiration was reduced to less than 3 mm and the position of the diaphragm was reproducible for difference gating periods. Conclusions: A RPM based PBG system was developed and implemented. With the new gating system, the patient's breath-hold time can be extended and a significant improvement in the treatment delivery efficiency can also be achieved.« less
  • Experiments were performed to determine the response of normal tissues of the rectal cavity and the prostate to localized 2.45 GHz microwave deep hyperthermia. Hyperthermia at 43/sup 0/C was delivered by means of a coaxial probe in the rectal cavity for 30 min. once or twice at an interval of 2 days. Normal tissues of the rectum, urinary bladder, and prostate were histologically examined up to three months after treatments. In almost all of the treated animals no tissue and organ injury resulted from localized deep hyperthermia at 43/sup 0/C. This treatment appears to be safe fo the treatment ofmore » carcinoma of the prostate.« less
  • Purpose: Intestinal radiation injury (radiation enteropathy) is relevant to cancer treatment, as well as to radiation accidents and radiation terrorism scenarios. This study assessed the protective efficacy of orazipone, a locally-acting small molecule immunomodulator. Methods and Materials: Male rats were orchiectomized, a 4-cm segment of small bowel was sutured to the inside of the scrotum, a proximal anteperistaltic ileostomy was created for intraluminal drug administration, and intestinal continuity was re-established by end-to-side anastomosis. After three weeks postoperative recovery, the intestine in the 'scrotal hernia' was exposed locally to single-dose or fractionated X-radiation. Orazipone (30 mg/kg/day) or vehicle was administered dailymore » through the ileostomy, either during and after irradiation, or only after irradiation. Structural, cellular, and molecular aspects of intestinal radiation toxicity were assessed two weeks after irradiation. Results: Orazipone significantly ameliorated histologic injury and transforming growth factor-{beta} immunoreactivity levels, both after single-dose and fractionated irradiation. Intestinal wall thickness was significantly reduced after single-dose and nonsignificantly after fractionated irradiation. Mucosal surface area and numbers of mast cells were partially restored by orazipone after single-dose irradiation. Conclusions: This work (1) demonstrates the utility of the ileostomy rat model for intraluminal administration of response modifiers in single-dose and fractionated radiation studies; (2) shows that mucosal immunomodulation during and/or after irradiation ameliorates intestinal toxicity; and (3) highlights important differences between single-dose and fractionated radiation regimens.« less