skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-E-14: Global Radiation Oncology Education and Training in Medical Physics Powered by Information and Communication Technologies

Abstract

Purpose: Recent publications have highlighted the potential of Information and Communication Technologies (ICTs) to catalyze collaborations in cancer care, research and education in global radiation oncology. This work reports on the use of ICTs for global Medical Physics education and training across three countries: USA, Tanzania and Kuwait Methods: An online education platform was established by Radiation Oncology Faculty from Harvard Medical School, and the University of Pennsylvania with integrated Medical Physics Course modules accessible to trainees in Tanzania via partnership with the Muhimbili University of Health and Allied Sciences, and the Ocean Road Cancer Institute. The course modules incorporated lectures covering Radiation Therapy Physics with videos, discussion board, assessments and grade center. Faculty at Harvard Medical School and the University of Massachusetts Lowell also employed weekly Skype meetings to train/mentor three graduate students, living out-of-state and in Kuwait for up to 9 research credits per semester for over two semesters towards obtaining their graduate degrees Results: Students were able to successfully access the Medical Physics course modules and participate in learning activities, online discussion boards, and assessments. Other instructors could also access/co-teach the course modules from USA and Tanzania. Meanwhile all three graduate students with remote training via Skypemore » and email made major progress in their graduate training with each one of them submitting their research results as abstracts to be presented at the 2016 AAPM conference. One student has also published her work already and all three are developing these abstracts for publication in peer-reviewed journals. Conclusion: Altogether, this work highlights concrete examples/model on how ICTs can be used for capacity building in Medical Physics across continents, for both education and research training needed for Masters/PhD degrees. The developed modules and model will be scaled to benefit many more trainees and other developing countries.« less

Authors:
 [1];  [2];  [3];  [4]; ;  [5];  [6];  [7]
  1. Harvard Medical School, Boston, MA (United States)
  2. (United States)
  3. University Massachusetts Lowell, Lowell, MA (United States)
  4. Muhimbili University of Health and Allied Sciences, Dar Es Salaam, TA (Tanzania, United Republic of)
  5. Ocean Road Cancer Institute, Dar Es Salaam (Tanzania, United Republic of)
  6. University of Pennsylvania, Philadelphia, Pennsylvania (United States)
  7. University of Pennsylvania, Sicklerville, NJ (United States)
Publication Date:
OSTI Identifier:
22624438
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; CONCRETES; EDUCATIONAL FACILITIES; LECTURES; MEDICAL PERSONNEL; MEETINGS; NEOPLASMS; RADIOTHERAPY; REVIEWS; TRAINING; UNITED REPUBLIC OF TANZANIA

Citation Formats

Ngwa, W, University Massachusetts Lowell, Lowell, MA, Sajo, E, Ngoma, T, Dachi, J, Julius Mwaiselage, J, Kenton, O, and Avery, S. SU-F-E-14: Global Radiation Oncology Education and Training in Medical Physics Powered by Information and Communication Technologies. United States: N. p., 2016. Web. doi:10.1118/1.4955700.
Ngwa, W, University Massachusetts Lowell, Lowell, MA, Sajo, E, Ngoma, T, Dachi, J, Julius Mwaiselage, J, Kenton, O, & Avery, S. SU-F-E-14: Global Radiation Oncology Education and Training in Medical Physics Powered by Information and Communication Technologies. United States. doi:10.1118/1.4955700.
Ngwa, W, University Massachusetts Lowell, Lowell, MA, Sajo, E, Ngoma, T, Dachi, J, Julius Mwaiselage, J, Kenton, O, and Avery, S. Wed . "SU-F-E-14: Global Radiation Oncology Education and Training in Medical Physics Powered by Information and Communication Technologies". United States. doi:10.1118/1.4955700.
@article{osti_22624438,
title = {SU-F-E-14: Global Radiation Oncology Education and Training in Medical Physics Powered by Information and Communication Technologies},
author = {Ngwa, W and University Massachusetts Lowell, Lowell, MA and Sajo, E and Ngoma, T and Dachi, J and Julius Mwaiselage, J and Kenton, O and Avery, S},
abstractNote = {Purpose: Recent publications have highlighted the potential of Information and Communication Technologies (ICTs) to catalyze collaborations in cancer care, research and education in global radiation oncology. This work reports on the use of ICTs for global Medical Physics education and training across three countries: USA, Tanzania and Kuwait Methods: An online education platform was established by Radiation Oncology Faculty from Harvard Medical School, and the University of Pennsylvania with integrated Medical Physics Course modules accessible to trainees in Tanzania via partnership with the Muhimbili University of Health and Allied Sciences, and the Ocean Road Cancer Institute. The course modules incorporated lectures covering Radiation Therapy Physics with videos, discussion board, assessments and grade center. Faculty at Harvard Medical School and the University of Massachusetts Lowell also employed weekly Skype meetings to train/mentor three graduate students, living out-of-state and in Kuwait for up to 9 research credits per semester for over two semesters towards obtaining their graduate degrees Results: Students were able to successfully access the Medical Physics course modules and participate in learning activities, online discussion boards, and assessments. Other instructors could also access/co-teach the course modules from USA and Tanzania. Meanwhile all three graduate students with remote training via Skype and email made major progress in their graduate training with each one of them submitting their research results as abstracts to be presented at the 2016 AAPM conference. One student has also published her work already and all three are developing these abstracts for publication in peer-reviewed journals. Conclusion: Altogether, this work highlights concrete examples/model on how ICTs can be used for capacity building in Medical Physics across continents, for both education and research training needed for Masters/PhD degrees. The developed modules and model will be scaled to benefit many more trainees and other developing countries.},
doi = {10.1118/1.4955700},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: Case Method Teaching approach is a teaching tool used commonly in business school to challenge students with real-world situations—i.e. cases. The students are placed in the role of the decision maker and have to provide a solution based on the multitude of information provided. Specifically, students must develop an ability to quickly make sense of a complex problem, provide a solution incorporating all of the objectives (at time conflicting) and constraints, and communicate that solution in a succinct, professional and effective manner. The validity of the solution is highly dependent on the auxiliary information provided in the case andmore » the basic didactic knowledge of the student. A Case Method Teaching approach was developed and implemented into an on-going course focused on AAPM Task Group reports at UTHSCSA. Methods: A current course at UTHSCSA reviews and discusses 15 AAPM Task Group reports per semester. The course is structured into three topic modules: Imaging QA, Stereotactic Radiotherapy, and Special Patient Measurements—i.e. pacemakers, fetal dose. After a topic module is complete, the students are divided into groups (2–3 people) and are asked to review a case study related to the module topic. Students then provide a solution presented in an executive summary and class presentation. Results: Case studies were created to address each module topic. Through team work and whole-class discussion, a collaborative learning environment was established. Students additionally learned concepts such vendor relations, financial negotiations, capital project management, and competitive strategy. Conclusion: Case Method Teaching approach is an effective teaching tool to further enhance the learning experience of radiation oncology physics students by presenting them with though-provoking dilemmas that require students to distinguish pertinent from peripheral information, formulate strategies and recommendations for action, and confront obstacles to implementation.« less
  • The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less
  • No abstract prepared.
  • Purpose: A survey was taken by NRG Oncology to assess Full Time Equivalent (FTE) contributions to multi institutional clinical trials by medical physicists.No current quantification of physicists’ efforts in FTE units associated with clinical trials is available. The complexity of multi-institutional trials increases with new technologies and techniques. Proper staffing may directly impact the quality of trial data and outcomes. The demands on physics time supporting clinical trials needs to be assessed. Methods: The NRG Oncology Medical Physicist Subcommittee created a sixteen question survey to obtain this FTE data. IROC Houston distributed the survey to their list of 1802 contactmore » physicists. Results: After three weeks, 363 responded (20.1% response). 187 (51.5%) institutions reporting external beam participation were processed. There was a wide range in number of protocols active and supported at each institution. Of the 187 clinics, 134 (71.7%) participate in 0 to 10 trials, 28 (15%) in 11 to 20 trials, 10 (5.3%) in 21 to 30 trials, 9 (4.8%) had 40 to 75 trials. On average, physicist spent 2.7 hours (SD: 6.0) per week supervising or interacting with clinical trial staff. 1.25 hours (SD: 3.37), 1.83 hours (SD: 4.13), and 0.64 hours(SD: 1.13) per week were spent on patient simulation, reviewing treatment plans, and maintaining a DICOM server, respectively. For all protocol credentialing activities, physicist spent an average of 37.05 hours (SD: 96.94) yearly. To support dosimetrists, clinicians, and therapists, physicist spend on average 2.07 hours (SD: 3.52) per week just reading protocols. Physicist attended clinical trial meetings for on average 1.13 hours (SD: 1.85) per month. Conclusion: Responding physicists spend a nontrivial amount of time: 8.8 hours per week (0.22 FTE) supporting, on average, 9 active multi-institutional clinical trials.« less
  • Purpose: To contribute to the professional profile of future medical physicists, technologists and physicians, and implement an adaptable educational strategy at both undergraduate and postgraduate levels. Methods: The Medical Physics Block of Electives (MPBE) designed was adapted to the Program of B.S. in Physics. The conferences and practical activities were developed with participatory methods, with interdisciplinary collaboration from research institutions and hospitals engaged on projects of Research, Development and Innovation (RDI). The scientific education was implemented by means of critical analysis of scientific papers and seminars where students debated on solutions for real research problems faced by medical physicists. Thismore » approach included courses for graduates not associated to educational programs of Medical Physics (MP). Results: The implementation of the MPBE began in September 2014, with the electives of Radiation MP and Introduction to Nuclear Magnetic Resonance. The students of second year received an Introduction to MP. This initiative was validated by the departmental Methodological Workshop, which promoted the full implementation of the MPBE. Both postgraduated and undergraduate trainees participated in practices with our DICOM viewer system, a local prototype for photoplethysmography and a home-made interface for ROC analysis, built with MATLAB. All these tools were designed and constructed in previous RDI projects. The collaborative supervision of University’s researchers with clinical medical physicists will allow to overcome the limitations of residency in hospitals, to reduce the workload for clinical supervisors and develop appropriate educational activities. Conclusion: We demonstrated the feasibility of adaptable educational strategies, considering available resources. This provides an innovative way for prospective medical physicists, technologists and radiation oncologists. This strategy can be implemented in several regions without formal programs of MP, like most of developing countries. Starting with undergraduate students would allow to reach appropriate certification faster than most of traditional or alternative approaches for education on MP. The authors acknowledge Radiation Consulting Group, LLC, an Arizona Corporation which promotes the use of ionizing radiation in the healing arts, for the “Oscar Luis Caballero” travel grant. The authors thanks to professors Meisbel Daudinot, David Adame and Alexander Pascau for the practices through imagis, imageROC and ANGIODIN PD3000 respectively.« less