skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-E-07: Web-Based Training for Radiosurgery: Methods and Metrics for Global Reach

Abstract

Purpose: Webinars have become an evolving tool with greater or lesser success in reaching health care providers (HCPs). This study seeks to assess best practices and metrics for success in webinar deployment for optimal global reach. Methods: Webinars have been developed and launched to reach practicing health care providers in the field of radiation oncology and radiosurgery. One such webinar was launched in early February 2016. “Multiple Brain Metastases & Volumetric Modulated Arc Radiosurgery: Refining the Single-Isocenter Technique to Benefit Surgeons and Patients” presented by Drs. Fiveash and Thomas from UAB was submitted to and accredited by the Institute for Medical Education as qualifying for CME as well as MDCB for educational credit for dosimetrists, in order to encourage participation. MedicalPhysicsWeb was chosen as the platform to inform attendees regarding the webinar. Further IME accredited the activity for 1 AMA PRA Category 1 credit for physicians & medical physicists. The program was qualified by the ABR in meeting the criteria for self-assessment towards fulfilling MOC requirements. Free SAMs credits were underwritten by an educational grant from Varian Medical Systems. Results: The webinar in question attracted 992 pre-registrants from 66 countries. Outside the US and Canada; 11 were from the Americas;more » 32 were from Europe; 9 from the Middle East and Africa. Australasia and the Indian subcontinent represented the remaining 14 countries. Pre-registrants included 423 Medical Physicists, 225 Medical Dosimetrists, 24 Radiation Therapists, 66 Radiation Oncologists & other. Conclusion: The effectiveness of CME and SAM-CME programs such as this can be gauged by the high rate of respondents who state an intention to change practice habits, a primary goal of continuing medical education and self-assessment. This webinar succeeded in being the most successful webinar on Medical Physics Web as measured by pre-registration, participation and participation to pre-registration ratio. R.A. Schulz is an employee of Varian Medical Systems.« less

Authors:
 [1];  [2];  [3];  [4];  [5]
  1. Varian Medical Systems, Palo Alto, CA (United States)
  2. University of Alabama - Birmingham, Birmingham, AL (United States)
  3. The University of Alabama at Birmingham, Birmingham, AL (United States)
  4. University Alabama Birmingham, Birmingham, AL (United States)
  5. Univesity of California, Los Angeles, Los Angeles, CA (United States)
Publication Date:
OSTI Identifier:
22624432
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BRAIN; FINANCING; HCP LATTICES; MEDICAL PERSONNEL; MEETINGS; METASTASES; PATIENTS; RADIOTHERAPY; SURGERY; TRAINING

Citation Formats

Schulz, R, Thomas, E, Popple, R, Fiveash, J, and Jacobsen, E. SU-F-E-07: Web-Based Training for Radiosurgery: Methods and Metrics for Global Reach. United States: N. p., 2016. Web. doi:10.1118/1.4955693.
Schulz, R, Thomas, E, Popple, R, Fiveash, J, & Jacobsen, E. SU-F-E-07: Web-Based Training for Radiosurgery: Methods and Metrics for Global Reach. United States. doi:10.1118/1.4955693.
Schulz, R, Thomas, E, Popple, R, Fiveash, J, and Jacobsen, E. 2016. "SU-F-E-07: Web-Based Training for Radiosurgery: Methods and Metrics for Global Reach". United States. doi:10.1118/1.4955693.
@article{osti_22624432,
title = {SU-F-E-07: Web-Based Training for Radiosurgery: Methods and Metrics for Global Reach},
author = {Schulz, R and Thomas, E and Popple, R and Fiveash, J and Jacobsen, E},
abstractNote = {Purpose: Webinars have become an evolving tool with greater or lesser success in reaching health care providers (HCPs). This study seeks to assess best practices and metrics for success in webinar deployment for optimal global reach. Methods: Webinars have been developed and launched to reach practicing health care providers in the field of radiation oncology and radiosurgery. One such webinar was launched in early February 2016. “Multiple Brain Metastases & Volumetric Modulated Arc Radiosurgery: Refining the Single-Isocenter Technique to Benefit Surgeons and Patients” presented by Drs. Fiveash and Thomas from UAB was submitted to and accredited by the Institute for Medical Education as qualifying for CME as well as MDCB for educational credit for dosimetrists, in order to encourage participation. MedicalPhysicsWeb was chosen as the platform to inform attendees regarding the webinar. Further IME accredited the activity for 1 AMA PRA Category 1 credit for physicians & medical physicists. The program was qualified by the ABR in meeting the criteria for self-assessment towards fulfilling MOC requirements. Free SAMs credits were underwritten by an educational grant from Varian Medical Systems. Results: The webinar in question attracted 992 pre-registrants from 66 countries. Outside the US and Canada; 11 were from the Americas; 32 were from Europe; 9 from the Middle East and Africa. Australasia and the Indian subcontinent represented the remaining 14 countries. Pre-registrants included 423 Medical Physicists, 225 Medical Dosimetrists, 24 Radiation Therapists, 66 Radiation Oncologists & other. Conclusion: The effectiveness of CME and SAM-CME programs such as this can be gauged by the high rate of respondents who state an intention to change practice habits, a primary goal of continuing medical education and self-assessment. This webinar succeeded in being the most successful webinar on Medical Physics Web as measured by pre-registration, participation and participation to pre-registration ratio. R.A. Schulz is an employee of Varian Medical Systems.},
doi = {10.1118/1.4955693},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The objective of this work was to develop a comprehensive knowledge-based methodology for predicting achievable dose–volume histograms (DVHs) and highly precise DVH-based quality metrics (QMs) in stereotactic radiosurgery/radiotherapy (SRS/SRT) plans. Accurate QM estimation can identify suboptimal treatment plans and provide target optimization objectives to standardize and improve treatment planning. Methods: Correlating observed dose as it relates to the geometric relationship of organs-at-risk (OARs) to planning target volumes (PTVs) yields mathematical models to predict achievable DVHs. In SRS, DVH-based QMs such as brain V{sub 10Gy} (volume receiving 10 Gy or more), gradient measure (GM), and conformity index (CI) are usedmore » to evaluate plan quality. This study encompasses 223 linear accelerator-based SRS/SRT treatment plans (SRS plans) using volumetric-modulated arc therapy (VMAT), representing 95% of the institution’s VMAT radiosurgery load from the past four and a half years. Unfiltered models that use all available plans for the model training were built for each category with a stratification scheme based on target and OAR characteristics determined emergently through initial modeling process. Model predictive accuracy is measured by the mean and standard deviation of the difference between clinical and predicted QMs, δQM = QM{sub clin} − QM{sub pred}, and a coefficient of determination, R{sup 2}. For categories with a large number of plans, refined models are constructed by automatic elimination of suspected suboptimal plans from the training set. Using the refined model as a presumed achievable standard, potentially suboptimal plans are identified. Predictions of QM improvement are validated via standardized replanning of 20 suspected suboptimal plans based on dosimetric predictions. The significance of the QM improvement is evaluated using the Wilcoxon signed rank test. Results: The most accurate predictions are obtained when plans are stratified based on proximity to OARs and their PTV volume sizes. Volumes are categorized into small (V{sub PTV} < 2 cm{sup 3}), medium (2 cm{sup 3} < V{sub PTV} < 25 cm{sup 3}), and large (25 cm{sup 3} < V{sub PTV}). The unfiltered models demonstrate the ability to predict GMs to ∼1 mm and fractional brain V{sub 10Gy} to ∼25% for plans with large V{sub PTV} and critical OAR involvements. Increased accuracy and precision of QM predictions are obtained when high quality plans are selected for the model training. For the small and medium V{sub PTV} plans without critical OAR involvement, predictive ability was evaluated using the refined model. For training plans, the model predicted GM to an accuracy of 0.2 ± 0.3 mm and fractional brain V{sub 10Gy} to 0.04 ± 0.12, suggesting highly accurate predictive ability. For excluded plans, the average δGM was 1.1 mm and fractional brain V{sub 10Gy} was 0.20. These δQM are significantly greater than those of the model training plans (p < 0.001). For CI, predictions are close to clinical values and no significant difference was observed between the training and excluded plans (p = 0.19). Twenty outliers with δGM > 1.35 mm were identified as potentially suboptimal, and replanning these cases using predicted target objectives demonstrates significant improvements on QMs: on average, 1.1 mm reduction in GM (p < 0.001) and 23% reduction in brain V{sub 10Gy} (p < 0.001). After replanning, the difference of δGM distribution between the 20 replans and the refined model training plans was marginal. Conclusions: The results demonstrate the ability to predict SRS QMs precisely and to identify suboptimal plans. Furthermore, the knowledge-based DVH predictions were directly used as target optimization objectives and allowed a standardized planning process that bettered the clinically approved plans. Full clinical application of this methodology can improve consistency of SRS plan quality in a wide range of PTV volume and proximity to OARs and facilitate automated treatment planning for this critical treatment site.« less
  • Purpose: To improve the efficiency of atlas-based segmentation without compromising accuracy, and to demonstrate the validity of the proposed method on MRI-based prostate segmentation application. Methods: Accurate and efficient automatic structure segmentation is an important task in medical image processing. Atlas-based methods, as the state-of-the-art, provide good segmentation at the cost of a large number of computationally intensive nonrigid registrations, for anatomical sites/structures that are subject to deformation. In this study, the authors propose to utilize a combination of global, regional, and local metrics to improve the accuracy yet significantly reduce the number of required nonrigid registrations. The authors firstmore » perform an affine registration to minimize the global mean squared error (gMSE) to coarsely align each atlas image to the target. Subsequently, atarget-specific regional MSE (rMSE), demonstrated to be a good surrogate for dice similarity coefficient (DSC), is used to select a relevant subset from the training atlas. Only within this subset are nonrigid registrations performed between the training images and the target image, to minimize a weighted combination of gMSE and rMSE. Finally, structure labels are propagated from the selected training samples to the target via the estimated deformation fields, and label fusion is performed based on a weighted combination of rMSE and local MSE (lMSE) discrepancy, with proper total-variation-based spatial regularization. Results: The proposed method was applied to a public database of 30 prostate MR images with expert-segmented structures. The authors’ method, utilizing only eight nonrigid registrations, achieved a performance with a median/mean DSC of over 0.87/0.86, outperforming the state-of-the-art full-fledged atlas-based segmentation approach of which the median/mean DSC was 0.84/0.82 when applying to their data set. Conclusions: The proposed method requires a fixed number of nonrigid registrations, independent of atlas size, providing desirable scalability especially important for a large or growing atlas. When applied to prostate segmentation, the method achieved better performance to the state-of-the-art atlas-based approaches, with significant improvement in computation efficiency. The proposed rationale of utilizing jointly global, regional, and local metrics, based on the information characteristic and surrogate behavior for registration and fusion subtasks, can be extended naturally to similarity metrics beyond MSE, such as correlation or mutual information types.« less
  • Performances of radiosurgery of intracranial lesions between cone-based Linac system and Tomotherapy-based system were compared in terms of dosimetry and time. Twelve patients with single intracranial lesion treated with cone-based Linac radiosurgery system from 2005 to 2009 were replanned for Tomotherapy-based radiosurgery treatment. The conformity index, homogeneity index (HI), and gradient score index (GSI) of each case was calculated. The Wilcoxon matched-pair test was used to compare the 3 indices between both systems. The cases with regular target (n = 6) and those with irregular target (n = 6) were further analyzed separately. The estimated treatment time between both systemsmore » was also compared. Significant differences were found in HI (p = 0.05) and in GSI (p = 0.03) for the whole group. Cone-based radiosurgery was better in GSI whereas Tomotherapy-based radiosurgery was better in HI. Cone-based radiosurgery was better in conformity index (p = 0.03) and GSI (p = 0.03) for regular targets, whereas Tomotherapy-based radiosurgery system performed significantly better in HI (p = 0.03) for irregular targets. The estimated total treatment time for Tomotherapy-based radiosurgery ranged from 24 minutes to 35 minutes, including 15 minutes of pretreatment megavoltage computed tomography (MVCT) and image registration, whereas that for cone-based radiosurgery ranged from 15 minutes for 1 isocenter to 75 minutes for 5 isocenters. As a rule of thumb, Tomotherapy-based radiosurgery system should be the first-line treatment for irregular lesions because of better dose homogeneity and shorter treatment time. Cone-based Linac radiosurgery system should be the treatment of choice for regular targets because of the better dose conformity, rapid dose fall-off, and reasonable treatment time.« less
  • Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between thesemore » two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.« less