skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-E-02: A Feasibility Study for Application of Metal Artifact Reduction Techniques in MR-Guided Brachytherapy Gynecological Cancer with Titanium Applicators

Abstract

Purpose: Utilization of Titanium Tandem and Ring (T&R) applicators in MR-guided brachytherapy has become widespread for gynecological cancer treatment. However, Titanium causes magnetic field disturbance and susceptibility artifact, which complicate image interpretation. In this study, metal artifact reduction techniques were employed to improve the image quality and reduce the metal related artifacts. Methods: Several techniques were employed to reduce the metal artifact caused by titanium T&R applicator. These techniques include Metal Artifact Reduction Sequence (MARS), View Angle Tilting (VAT) to correct in-plane distortion, and Slice Encoding for Metal Artifact Correction (SEMAC) for through-plane artifact correction. Moreover, MARS can be combined with VAT to further reduce the in-plane artifact by reapplying the selection gradients during the readout (MARS+VAT). SEMAC uses a slice selective excitation but acquires additional z-encodings in order to resolve off-resonant signal and to reduce through-plane distortions. Results: Comparison between the clinical sequences revealed that increasing the bandwidth reduces the error in measured diameter of T&R. However, the error is larger than 4mm for the best case with highest bandwidth and spatial resolution. MARS+VAT with isotropic resolution of 1mm reduced the error to 1.9mm which is the least among the examined 2D sequences. The measured diameter of tandem frommore » SEMAC+VAT has the closest value to the actual diameter of tandem (3.2mm) and the error was reduced to less than 1mm. In addition, SEMAC+VAT significantly reduces the blooming artifact in the ring compared to clinical sequences. Conclusion: A higher bandwidth and spatial resolution sequence reduces the artifact and diameter of applicator with a slight compromise in SNR. Metal artifact reduction sequences decrease the distortion associated with titanium applicator. SEMAC+VAT sequence in combination with VAT revealed promising results for titanium imaging and can be utilized for MR-guided brachytherapy in gynecological cancer. The author is employee with Philips Healthcare.« less

Authors:
 [1]
  1. Philips healthtech, Cleveland, OH (United States)
Publication Date:
OSTI Identifier:
22624429
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; BIOMEDICAL RADIOGRAPHY; BRACHYTHERAPY; CORRECTIONS; DISTURBANCES; ERRORS; FEASIBILITY STUDIES; IMAGES; NEOPLASMS; READOUT SYSTEMS; SPATIAL RESOLUTION; TITANIUM

Citation Formats

Kadbi, M. SU-F-E-02: A Feasibility Study for Application of Metal Artifact Reduction Techniques in MR-Guided Brachytherapy Gynecological Cancer with Titanium Applicators. United States: N. p., 2016. Web. doi:10.1118/1.4955688.
Kadbi, M. SU-F-E-02: A Feasibility Study for Application of Metal Artifact Reduction Techniques in MR-Guided Brachytherapy Gynecological Cancer with Titanium Applicators. United States. doi:10.1118/1.4955688.
Kadbi, M. 2016. "SU-F-E-02: A Feasibility Study for Application of Metal Artifact Reduction Techniques in MR-Guided Brachytherapy Gynecological Cancer with Titanium Applicators". United States. doi:10.1118/1.4955688.
@article{osti_22624429,
title = {SU-F-E-02: A Feasibility Study for Application of Metal Artifact Reduction Techniques in MR-Guided Brachytherapy Gynecological Cancer with Titanium Applicators},
author = {Kadbi, M},
abstractNote = {Purpose: Utilization of Titanium Tandem and Ring (T&R) applicators in MR-guided brachytherapy has become widespread for gynecological cancer treatment. However, Titanium causes magnetic field disturbance and susceptibility artifact, which complicate image interpretation. In this study, metal artifact reduction techniques were employed to improve the image quality and reduce the metal related artifacts. Methods: Several techniques were employed to reduce the metal artifact caused by titanium T&R applicator. These techniques include Metal Artifact Reduction Sequence (MARS), View Angle Tilting (VAT) to correct in-plane distortion, and Slice Encoding for Metal Artifact Correction (SEMAC) for through-plane artifact correction. Moreover, MARS can be combined with VAT to further reduce the in-plane artifact by reapplying the selection gradients during the readout (MARS+VAT). SEMAC uses a slice selective excitation but acquires additional z-encodings in order to resolve off-resonant signal and to reduce through-plane distortions. Results: Comparison between the clinical sequences revealed that increasing the bandwidth reduces the error in measured diameter of T&R. However, the error is larger than 4mm for the best case with highest bandwidth and spatial resolution. MARS+VAT with isotropic resolution of 1mm reduced the error to 1.9mm which is the least among the examined 2D sequences. The measured diameter of tandem from SEMAC+VAT has the closest value to the actual diameter of tandem (3.2mm) and the error was reduced to less than 1mm. In addition, SEMAC+VAT significantly reduces the blooming artifact in the ring compared to clinical sequences. Conclusion: A higher bandwidth and spatial resolution sequence reduces the artifact and diameter of applicator with a slight compromise in SNR. Metal artifact reduction sequences decrease the distortion associated with titanium applicator. SEMAC+VAT sequence in combination with VAT revealed promising results for titanium imaging and can be utilized for MR-guided brachytherapy in gynecological cancer. The author is employee with Philips Healthcare.},
doi = {10.1118/1.4955688},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The aim of this study was to characterize the levels of artifacts and distortions of titanium applicators on 3.0-Tesla magnetic resonance imaging (MRI). Methods and Materials: Fletcher-Suit-Delclos-style tandem and ovoids (T and O) and tandem and ring applicator (T and R) were examined. The quality assurance (QA) phantoms for each applicator were designed and filled with copper sulphate solution (1.5 g/l). The artifacts were quantified with the registration of corresponding computed tomography (CT) images. A favorable MR sequence was searched in terms of artifacts. Using the sequence, the artifacts were determined. The geometric distortions induced by the applicators weremore » quantified through each registration of CT and MRI without applicators. The artifacts of T and O were also evaluated on in vivo MRI datasets of 5 patients. Results: T1-weighted MRI with 1-mm slice thickness was found as a favorable MR sequence. Applying the sequence, the artifacts at the tandem tip of T and O and T and R were determined as 1.5 {+-} 0.5 mm in a superior direction in phantom studies. In the ovoids of T and O, we found artifacts less than 1.5 {+-} 0.5 mm. The artifacts of a T and O tandem in vivo were found as less than 2.6 {+-} 1.3 mm on T1-weighted MRI, whereas less than 6.9 {+-} 3.4 mm on T2-weighted MRI. No more than 1.2 {+-} 0.6 mm (3.0 {+-} 1.5 mm) of distortions, due to a titanium applicator, were measured on T1-weighted MRI (T2-). Conclusion: In 3.0-Tesla MRI, we found the artifact widths at the tip of tandem were less than 1.5 {+-} 0.5 mm for both T and O and T and R when using T1-weighted MRI in phantom studies. However, exclusive 3.0-Tesla MRI-guided brachytherapy planning with a titanium applicator should be cautiously implemented.« less
  • Purpose: To evaluate the dosimetric metrics of HDR Ring and Tandem applicator Brachytherapy for primary cervical cancers. Methods: The dosimetric metrics of high-risk clinical target volumes (HDR-CTV) of 12 patients (in total 60 fractions/plans) treated with the HDR ring and tandem applicators were retrospectively analyzed. Ring diameter is from 2.6 to 3.4 cm, tandem length is from 4 to 6 cm, and the angle is either 45 or 60 degrees. The first fraction plan was MR guided, the MR images were then used as a reference for contouring the HR-CTV in CT images of following 4 fractions. The nominal prescriptionmore » dose was between 5.2 and 5.8 Gy at the point A. The plans were adjusted to cover at least 90% of the HR-CTV by 90% of the prescription dose and to reduce the doses to the bladder, rectum and bowel-bag. Minimum target dose of D100 and D90 were converted into the biologically equivalent EBRT dose D90-iso and D100-iso (using α/β=10 Gy, 2 Gy/fx). Equivalent uniform doses (EUD) based on the average cancer killing across the target volume were calculated by the modified linear quadratic model (MLQ) from the differential dose volume histogram (DVH) tables. Results: The average D90iso of all plans is 8.1 Gy (ranging from 6.2 to 15 Gy, median 7.8 Gy); the average D100iso is just 4.1 Gy (ranging from 1.8 to 7.8 Gy; median 3.9 Gy). The average EUD is 7.0 Gy (ranging from 6.1 to 9.6 Gy, median 6.9 Gy), which is 87% of the D90iso, and 170% of the D100iso. Conclusion: The EUDs is smaller than D90iso but greater than D100iso. Because the EUD takes into account the intensive cancer cell killing in the high dose zone of HR-CTV, MLQ calculated EUD apparently is more relevant than D90 and D100 to describe the HDR brachytherapy treatment quality.« less
  • Purpose: (1) Evaluate the safety and radiation attenuation properties of PCISO, a bio-compatible, sterilizable 3D printing material by Stratasys, (2) establish a method for commissioning customized multi- and single-use 3D printed applicators, (3) report on use of customized vaginal cylinders used to treat a series of serous endometrial cancer patient. Methods: A custom film dosimetry apparatus was designed to hold a Gafchromic radio film segment between two blocks of PC-ISO and 3D-printed using a Fortus 400mc (StrataSys). A dose plan was computed using 13 dwell positions at 2.5 mm spacing and normalized to 1500 cGy at 1 cm. Film exposuremore » was compared to control tests in only air and only water. The average Hounsfield Unit (HU) was computed and used to verify water equivalency. For the clinical use cases, the physician specifies the dimensions and geometry of a custom applicator from which a CAD model is designed and printed. Results: The doses measured from the PC-ISO Gafchromic film test were within 1% of the dose measured in only water between 1cm and 6cm from the channel. Doses increased 7–4% measured in only air. HU range was 11–43. The applicators were sterilized using the Sterrad system multiple times without damage. As of submission 3 unique cylinders have been designed, printed, and used in the clinic. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be reported. Conclusions: Quality assurance (QA) evaluation of the PC-ISO 3D-printing material showed that PC-ISO is a suitable material for a gynecological brachytherapy vaginal cylinder in a clinical setting. With the material commissioning completed, if the physician determines that a better treatment would Result, a customized design is fabricated with limited additional QA necessary. Although this study was specific to PC-ISO, the same setup can be used to evaluate other 3D-printing materials.« less
  • Purpose: To demonstrate that utilization of a novel, intensity modulation capable, direction modulated brachytherapy (DMBT) tandem applicator can improve plan quality compared with conventional T&R applicator during an image guided cervical cancer brachytherapy. Methods: 45 cervical cancer patients treated with PDR brachytherapy were reviewed. Of them, a) 27 were treated using T&R only, b) 9 were treated using T&R with needles attached to the ring, and c) the remaining 9 were treated using T&R with needles attached to the ring (AN) as well as additional free-hand-loaded needles (FN). The DMBT tandem design has 6 peripheral holes of 1.3-mm diameter, groovedmore » along a nonmagnetic tungsten alloy rod, enclosed in a plastic sheath with total 6.0-mm diameter. An in-house-coded inverse planning system was used for planning DMBT and T&R cases. All typical clinical constraints including OAR dose limits, dwell times, and loading patterns were respected. For the DMBT and T&R applicators, the plans were optimized with the same conventional ring in place, but repeatedly planned with and without AN/FN needles. All generated plans were normalized to the same D90 of the clinically treated plans. Results: For the plans in category a), DMBT generally outperformed T&R with average reduction in D2cc of −2.39%, −5.21%, and −2.69% for bladder, rectum, and sigmoid, respectively. For the plans in category b) and c), DMBT generally outperformed T&R if the same needles in AN/FN were utilized in both cases with average reduction in D2cc of −1.82%, −3.40%, and −6.04%, respectively. For the cases where the needles were not utilized for both applicators, an average D2cc reduction of −7.45%, −7.61%, and 17.47% were observed, respectively. Conclusions: Under the same clinical conditions, with/without needles, the DMBT applicator tends to generate more favorable plans compared with the conventional T&R applicator, and hence, is a promising technology.« less
  • Purpose: High-Z (metal) implants in CT scans cause significant streak-like artifacts in the reconstructed dataset. This results in both inaccurate CT Hounsfield units for the tissue as well as obscuration of the target and organs at risk (OARs) for radiation therapy planning. Herein we analyze two metal artifact reduction algorithms: GE’s Smart MAR and a Metal Deletion Technique (MDT) for geometric and Hounsfield Unit (HU) accuracy. Methods: A CT-to-electron density phantom, with multiple inserts of various densities and a custom Cerrobend insert (Zeff=76.8), is utilized in this continuing study. The phantom is scanned without metal (baseline) and again with themore » metal insert. Using one set of projection data, reconstructed CT volumes are created with filtered-back-projection (FBP) and the MAR and the MDT algorithms. Regions-of-Interest (ROIs) are evaluated for each insert for HU accuracy; the metal insert’s Full-Width-Half-Maximum (FWHM) is used to evaluate the geometric accuracy. Streak severity is quantified with an HU error metric over the phantom volume. Results: The original FBP reconstruction has a Root-Mean-Square-Error (RMSE) of 57.55 HU (STD=29.19, range=−145.8 to +79.2) compared to baseline. The MAR reconstruction has a RMSE of 20.98 HU (STD=13.92, range=−18.3 to +61.7). The MDT reconstruction has a RMSE of 10.05 HU (STD=10.5, range=−14.8 to +18.6). FWHM for baseline=162.05; FBP=161.84 (−0.13%); MAR=162.36 (+0.19%); MDT=162.99 (+0.58%). Streak severity metric for FBP=19.73 (22.659% bad pixels); MAR=8.743 (9.538% bad); MDT=4.899 (5.303% bad). Conclusion: Image quality, in terms of HU accuracy, in the presence of high-Z metal objects in CT scans is improved by metal artifact reduction reconstruction algorithms. The MDT algorithm had the highest HU value accuracy (RMSE=10.05 HU) and best streak severity metric, but scored the worst in terms of geometric accuracy. Qualitatively, the MAR and MDT algorithms increased detectability of inserts, although there is a loss of in-plane resolution near the metallic insert.« less