skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement

Abstract

Purpose: Adding kernels (small perturbations in leaf positions) to the existing apertures of VMAT control points may improve plan quality. We investigate the calculation of kernel doses using a parallelized Monte Carlo (MC) method. Methods: A clinical prostate VMAT DICOM plan was exported from Eclipse. An arbitrary control point and leaf were chosen, and a modified MLC file was created, corresponding to the leaf position offset by 0.5cm. The additional dose produced by this 0.5 cm × 0.5 cm kernel was calculated using the DOSXYZnrc component module of BEAMnrc. A range of particle history counts were run (varying from 3 × 10{sup 6} to 3 × 10{sup 7}); each job was split among 1, 10, or 100 parallel processes. A particle count of 3 × 10{sup 6} was established as the lower range because it provided the minimal accuracy level. Results: As expected, an increase in particle counts linearly increases run time. For the lowest particle count, the time varied from 30 hours for the single-processor run, to 0.30 hours for the 100-processor run. Conclusion: Parallel processing of MC calculations in the EGS framework significantly decreases time necessary for each kernel dose calculation. Particle counts lower than 1 × 10{supmore » 6} have too large of an error to output accurate dose for a Monte Carlo kernel calculation. Future work will investigate increasing the number of parallel processes and optimizing run times for multiple kernel calculations.« less

Authors:
 [1];  [2]; ;  [3]
  1. State University of New York at Fredonia, Fredonia, NY (United States)
  2. (United States)
  3. Roswell Park Cancer Institute, Buffalo, NY (United States)
Publication Date:
OSTI Identifier:
22624425
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ACCURACY; ERRORS; KERNELS; MONTE CARLO METHOD; OPTIMIZATION; PARALLEL PROCESSING; PROSTATE; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Chamberlain, S, Roswell Park Cancer Institute, Buffalo, NY, French, S, and Nazareth, D. SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement. United States: N. p., 2016. Web. doi:10.1118/1.4955684.
Chamberlain, S, Roswell Park Cancer Institute, Buffalo, NY, French, S, & Nazareth, D. SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement. United States. doi:10.1118/1.4955684.
Chamberlain, S, Roswell Park Cancer Institute, Buffalo, NY, French, S, and Nazareth, D. 2016. "SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement". United States. doi:10.1118/1.4955684.
@article{osti_22624425,
title = {SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement},
author = {Chamberlain, S and Roswell Park Cancer Institute, Buffalo, NY and French, S and Nazareth, D},
abstractNote = {Purpose: Adding kernels (small perturbations in leaf positions) to the existing apertures of VMAT control points may improve plan quality. We investigate the calculation of kernel doses using a parallelized Monte Carlo (MC) method. Methods: A clinical prostate VMAT DICOM plan was exported from Eclipse. An arbitrary control point and leaf were chosen, and a modified MLC file was created, corresponding to the leaf position offset by 0.5cm. The additional dose produced by this 0.5 cm × 0.5 cm kernel was calculated using the DOSXYZnrc component module of BEAMnrc. A range of particle history counts were run (varying from 3 × 10{sup 6} to 3 × 10{sup 7}); each job was split among 1, 10, or 100 parallel processes. A particle count of 3 × 10{sup 6} was established as the lower range because it provided the minimal accuracy level. Results: As expected, an increase in particle counts linearly increases run time. For the lowest particle count, the time varied from 30 hours for the single-processor run, to 0.30 hours for the 100-processor run. Conclusion: Parallel processing of MC calculations in the EGS framework significantly decreases time necessary for each kernel dose calculation. Particle counts lower than 1 × 10{sup 6} have too large of an error to output accurate dose for a Monte Carlo kernel calculation. Future work will investigate increasing the number of parallel processes and optimizing run times for multiple kernel calculations.},
doi = {10.1118/1.4955684},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered shorter delivery time than 7F-IMRT and 9F-IMRT without compromising the plan quality.« less
  • Purpose: To identify the robustness of different treatment techniques in respect to simulated linac errors on the dose distribution to the target volume and organs at risk for step and shoot IMRT (ssIMRT), VMAT and Autoplan generated VMAT nasopharynx plans. Methods: A nasopharynx patient dataset was retrospectively replanned with three different techniques: 7 beam ssIMRT, one arc manual generated VMAT and one arc automatically generated VMAT. Treatment simulated uncertainties: gantry, collimator, MLC field size and MLC shifts, were introduced into these plans at increments of 5,2,1,−1,−2 and −5 (degrees or mm) and recalculated in Pinnacle. The mean and maximum dosesmore » were calculated for the high dose PTV, parotids, brainstem, and spinal cord and then compared to the original baseline plan. Results: Simulated gantry angle errors have <1% effect on the PTV, ssIMRT is most sensitive. The small collimator errors (±1 and ±2 degrees) impacted the mean PTV dose by <2% for all techniques, however for the ±5 degree errors mean target varied by up to 7% for the Autoplan VMAT and 10% for the max dose to the spinal cord and brain stem, seen in all techniques. The simulated MLC shifts introduced the largest errors for the Autoplan VMAT, with the larger MLC modulation presumably being the cause. The most critical error observed, was the MLC field size error, where even small errors of 1 mm, caused significant changes to both the PTV and the OAR. The ssIMRT is the least sensitive and the Autoplan the most sensitive, with target errors of up to 20% over and under dosages observed. Conclusion: For a nasopharynx patient the plan robustness observed is highest for the ssIMRT plan and lowest for the Autoplan generated VMAT plan. This could be caused by the more complex MLC modulation seen for the VMAT plans. This project is supported by a grant from NSW Cancer Council.« less
  • Purpose: IMPT plan design is highly dependent on planner’s experiences. VMAT plan design is relatively mature and can even be automated. The quality of IMPT plan designed by in-experienced planner could be inferior to that of VMAT plan designed by experienced planner or automatic planning software. Here we introduce a method for designing IMPT plan based on VMAT plan to ensure the IMPT plan be superior to IMRT/VMAT plan for majority clinical scenario. Methods: To design a new IMPT plan, a VMAT plan is first generated either by experienced planner or by in-house developed automatic planning system. An in-house developedmore » tool is used to generate the dose volume constrains for the IMPT plan as plan template to Eclipse TPS. The beam angles for IMPT plan are selected based on the preferred angles in the VMAT plan. IMPT plan is designed by importing the plan objectives generated from VMAT plan. Majority thoracic IMPT plans are designed using this plan approach in our center. In this work, a thoracic IMPT plan under RTOG 1308 protocol is selected to demonstrate the effectiveness and efficiency of this approach. The dosimetric indices of IMPT are compared with VMAT plan. Results: The PTV D95, lung V20, MLD, mean heart dose, esophagus D1, cord D1 are 70Gy, 31%, 17.8Gy, 25.5Gy, 73Gy, 45Gy for IMPT plan and 65.3Gy, 34%, 21.6Gy, 35Gy, 74Gy, 48Gy for VMAT plan. For majority cases, the high dose region of the normal tissue which is in proximity of PTV is comparable between IMPT and VMAT plan. The low dose region of the IMPT plan is significantly better than VMAT plan. Conclusion: Using the knowledge gained in VMAT plan design can help efficiently and effectively design high quality IMPT plan. The quality of IMPT plan can be controlled to ensure the superiority of IMPT plan compared to VMAT/IMRT plan.« less
  • Purpose: We investigate the effect of residual setup and motion errors in lung irradiation for VMAT, double scattering (DS) proton beams and spot scanning (IMPT) in a case study. Methods: The CT image and contour sets of a lung patient treated with 6 MV VMAT is re-planned with DS as well as IMPT subject to the same constraints; V20(lung), V10(lung) and V5(lung)< 15%, 20% and 25% respectively, V20(heart)<25% and V100%(PTV)≥95%. In addition, uncertainty analysis in the form of isocenter shifts (±1–3mm) was incorporated in the DVH calculations to assess the plan robustness. Results: Only the IMPT plan satisfies all themore » specified constraints. The 3D-conformal DS proton plan is able to achieve better sparing of the lung and heart dose compared to VMAT. For the lung, V20, V10 and V5 are 13%, 19% and 25% respectively for IMPT, 18%, 23% and 30% respectively for DS, and 20%, 30% and 42% respectively for VMAT. For heart: 0.6% for IMPT, 2.4% for DS and 30% for VMAT. When incorporating isocenter shifts in DVH calculations, the maximum changes in V20, V10 and V5 for lung are 14%, 21% and 28% respectively for IMPT. The corresponding max changes are19%, 24% and 32% respectively for DS, and 22%, 32% and 44% respectively for VMAT. The largest change occurs in the PTV coverage. For IMPT, V100%(PTV) varies between 88–96%, while V100%(PTV) for VMAT suffers a larger change compared to DS (Δ=5.5% vs 3.3%). Conclusion: While only IMPT satisfies the stringent dose-volume constraints for the lung irradiation, it is not as robust as the 3D conformal DS plan. DS also has better sparing in lung and heart compared to VMAT and similar PTV coverage. By including isocenter shifts in dose-volume calculations in treatment planning of lung, DS appears to be more robust than VMAT.« less
  • The development and applications of a parallel, time-dependent incompressible Navier-Stokes flow solver and a parallel multigrid elliptic kernel are described. The flow solver is based on a second-order projection method applied to a staggered finite-difference grid. The multigrid algorithms implemented in the parallel elliptic kernel, which is needed by the flow solver, and V-cycle and full V-cycle schemes. A grid-partition strategy is used in the parallel implementations of both the flow solver and the multigrid elliptic kernel on all fine and coarse grids. Numerical experiments and parallel performance tests show the parallel solver package is numerically stable, physically robust, andmore » computationally efficient. Both the multigrid elliptic kernel and the flow solver scale very well to a large number of processors on Intel Paragon and Cray T3D for computations with moderate granularity. The solver package has been carefully designed and coded so that it can be easily adapted to solving a variety of interesting two- and three-dimensional flow problems. The solver package is portable to parallel systems that support MPI, PVM, and NX for interprocessor communications. 13 refs., 23 figs., 3 tabs.« less