skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-D-207B-05: Robust Intra-Tumor Partitioning to Identify High-Risk Subregions for Prognosis in Lung Cancer

Abstract

Purpose: To develop an intra-tumor partitioning framework for identifying high-risk subregions from 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and CT imaging, and to test whether tumor burden associated with the high-risk subregions is prognostic of outcomes in lung cancer. Methods: In this institutional review board-approved retrospective study, we analyzed the pre-treatment FDG-PET and CT scans of 44 lung cancer patients treated with radiotherapy. A novel, intra-tumor partitioning method was developed based on a two-stage clustering process: first at patient-level, each tumor was over-segmented into many superpixels by k-means clustering of integrated PET and CT images; next, tumor subregions were identified by merging previously defined superpixels via population-level hierarchical clustering. The volume associated with each of the subregions was evaluated using Kaplan-Meier analysis regarding its prognostic capability in predicting overall survival (OS) and out-of-field progression (OFP). Results: Three spatially distinct subregions were identified within each tumor, which were highly robust to uncertainty in PET/CT co-registration. Among these, the volume of the most metabolically active and metabolically heterogeneous solid component of the tumor was predictive of OS and OFP on the entire cohort, with a concordance index or CI = 0.66–0.67. When restricting the analysis to patients with stage III disease (n =more » 32), the same subregion achieved an even higher CI = 0.75 (HR = 3.93, logrank p = 0.002) for predicting OS, and a CI = 0.76 (HR = 4.84, logrank p = 0.002) for predicting OFP. In comparison, conventional imaging markers including tumor volume, SUVmax and MTV50 were not predictive of OS or OFP, with CI mostly below 0.60 (p < 0.001). Conclusion: We propose a robust intra-tumor partitioning method to identify clinically relevant, high-risk subregions in lung cancer. We envision that this approach will be applicable to identifying useful imaging biomarkers in many cancer types.« less

Authors:
; ; ; ; ; ; ;  [1]
  1. Stanford University, Palo Alto, CA (United States)
Publication Date:
OSTI Identifier:
22624416
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOLOGICAL MARKERS; BIOMEDICAL RADIOGRAPHY; FLUORINE 18; FLUORODEOXYGLUCOSE; IMAGE PROCESSING; LUNGS; NEOPLASMS; PATIENTS; POSITRON COMPUTED TOMOGRAPHY; RADIOTHERAPY

Citation Formats

Wu, J, Gensheimer, M, Dong, X, Rubin, D, Napel, S, Diehn, M, Loo, B, and Li, R. SU-D-207B-05: Robust Intra-Tumor Partitioning to Identify High-Risk Subregions for Prognosis in Lung Cancer. United States: N. p., 2016. Web. doi:10.1118/1.4955673.
Wu, J, Gensheimer, M, Dong, X, Rubin, D, Napel, S, Diehn, M, Loo, B, & Li, R. SU-D-207B-05: Robust Intra-Tumor Partitioning to Identify High-Risk Subregions for Prognosis in Lung Cancer. United States. doi:10.1118/1.4955673.
Wu, J, Gensheimer, M, Dong, X, Rubin, D, Napel, S, Diehn, M, Loo, B, and Li, R. Wed . "SU-D-207B-05: Robust Intra-Tumor Partitioning to Identify High-Risk Subregions for Prognosis in Lung Cancer". United States. doi:10.1118/1.4955673.
@article{osti_22624416,
title = {SU-D-207B-05: Robust Intra-Tumor Partitioning to Identify High-Risk Subregions for Prognosis in Lung Cancer},
author = {Wu, J and Gensheimer, M and Dong, X and Rubin, D and Napel, S and Diehn, M and Loo, B and Li, R},
abstractNote = {Purpose: To develop an intra-tumor partitioning framework for identifying high-risk subregions from 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and CT imaging, and to test whether tumor burden associated with the high-risk subregions is prognostic of outcomes in lung cancer. Methods: In this institutional review board-approved retrospective study, we analyzed the pre-treatment FDG-PET and CT scans of 44 lung cancer patients treated with radiotherapy. A novel, intra-tumor partitioning method was developed based on a two-stage clustering process: first at patient-level, each tumor was over-segmented into many superpixels by k-means clustering of integrated PET and CT images; next, tumor subregions were identified by merging previously defined superpixels via population-level hierarchical clustering. The volume associated with each of the subregions was evaluated using Kaplan-Meier analysis regarding its prognostic capability in predicting overall survival (OS) and out-of-field progression (OFP). Results: Three spatially distinct subregions were identified within each tumor, which were highly robust to uncertainty in PET/CT co-registration. Among these, the volume of the most metabolically active and metabolically heterogeneous solid component of the tumor was predictive of OS and OFP on the entire cohort, with a concordance index or CI = 0.66–0.67. When restricting the analysis to patients with stage III disease (n = 32), the same subregion achieved an even higher CI = 0.75 (HR = 3.93, logrank p = 0.002) for predicting OS, and a CI = 0.76 (HR = 4.84, logrank p = 0.002) for predicting OFP. In comparison, conventional imaging markers including tumor volume, SUVmax and MTV50 were not predictive of OS or OFP, with CI mostly below 0.60 (p < 0.001). Conclusion: We propose a robust intra-tumor partitioning method to identify clinically relevant, high-risk subregions in lung cancer. We envision that this approach will be applicable to identifying useful imaging biomarkers in many cancer types.},
doi = {10.1118/1.4955673},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To predict early pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multi-region analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). Methods: In this institution review board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with a high-temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitativemore » Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Results: Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast wash-out were statistically significant (p< 0.05) after correcting for multiple testing, with area under the ROC curve or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (p = 0.002) in leave-one-out cross validation. This improved upon conventional imaging predictors such as tumor volume (AUC=0.53) and texture features based on whole-tumor analysis (AUC=0.65). Conclusion: The heterogeneity of the tumor subregion associated with fast wash-out on DCE-MRI predicted early pathological response to neoadjuvant chemotherapy in breast cancer.« less
  • Purpose: To develop an intratumor partitioning framework for identifying high-risk subregions from {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) imaging and to test whether tumor burden associated with the high-risk subregions is prognostic of outcomes in lung cancer. Methods and Materials: In this institutional review board–approved retrospective study, we analyzed the pretreatment FDG-PET and CT scans of 44 lung cancer patients treated with radiation therapy. A novel, intratumor partitioning method was developed, based on a 2-stage clustering process: first at the patient level, each tumor was over-segmented into many superpixels by k-means clustering of integrated PET andmore » CT images; next, tumor subregions were identified by merging previously defined superpixels via population-level hierarchical clustering. The volume associated with each of the subregions was evaluated using Kaplan-Meier analysis regarding its prognostic capability in predicting overall survival (OS) and out-of-field progression (OFP). Results: Three spatially distinct subregions were identified within each tumor that were highly robust to uncertainty in PET/CT co-registration. Among these, the volume of the most metabolically active and metabolically heterogeneous solid component of the tumor was predictive of OS and OFP on the entire cohort, with a concordance index or CI of 0.66-0.67. When restricting the analysis to patients with stage III disease (n=32), the same subregion achieved an even higher CI of 0.75 (hazard ratio 3.93, log-rank P=.002) for predicting OS, and a CI of 0.76 (hazard ratio 4.84, log-rank P=.002) for predicting OFP. In comparison, conventional imaging markers, including tumor volume, maximum standardized uptake value, and metabolic tumor volume using threshold of 50% standardized uptake value maximum, were not predictive of OS or OFP, with CI mostly below 0.60 (log-rank P>.05). Conclusion: We propose a robust intratumor partitioning method to identify clinically relevant, high-risk subregions in lung cancer. We envision that this approach will be applicable to identifying useful imaging biomarkers in many cancer types.« less
  • Purpose: To investigate correlation of normal lung CT density changes with dose accuracy and outcome after SBRT for patients with early stage lung cancer. Methods: Dose distributions for patients originally planned and treated using a 1-D pencil beam-based (PB-1D) dose algorithm were retrospectively recomputed using algorithms: 3-D pencil beam (PB-3D), and model-based Methods: AAA, Acuros XB (AXB), and Monte Carlo (MC). Prescription dose was 12 Gy × 4 fractions. Planning CT images were rigidly registered to the followup CT datasets at 6–9 months after treatment. Corresponding dose distributions were mapped from the planning to followup CT images. Following the methodmore » of Palma et al .(1–2), Hounsfield Unit (HU) changes in lung density in individual, 5 Gy, dose bins from 5–45 Gy were assessed in the peri-tumor region, defined as a uniform, 3 cm expansion around the ITV(1). Results: There is a 10–15% displacement of the high dose region (40–45 Gy) with the model-based algorithms, relative to the PB method, due to the electron scattering of dose away from the tumor into normal lung tissue (Fig.1). Consequently, the high-dose lung region falls within the 40–45 Gy dose range, causing an increase in HU change in this region, as predicted by model-based algorithms (Fig.2). The patient with the highest HU change (∼110) had mild radiation pneumonitis, and the patient with HU change of ∼80–90 had shortness of breath. No evidence of pneumonitis was observed for the 3 patients with smaller CT density changes (<50 HU). Changes in CT densities, and dose-response correlation, as computed with model-based algorithms, are in excellent agreement with the findings of Palma et al. (1–2). Conclusion: Dose computed with PB (1D or 3D) algorithms was poorly correlated with clinically relevant CT density changes, as opposed to model-based algorithms. A larger cohort of patients is needed to confirm these results. This work was supported in part by a grant from Varian Medical Systems, Palo Alto, CA.« less
  • Purpose: A clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer is undergoing at our institution. In addition to escalating dose to the prostate, we have increased dose to intra-prostatic lesions. Intra-fractional prostate motion deteriorates well planned radiation dose, especially for the small intra-prostatic lesions. To solve this problem, we have developed a motion tracking and 4D dose-reconstruction system to facilitate adaptive re-planning. Methods: Patients in the clinical trial were treated with VMAT using four arcs and 10 FFF beam. KV triggered x-ray projections were taken every 3 sec during delivery to acquire 2D projections of 3Dmore » anatomy at the direction orthogonal to the therapeutic beam. Each patient had three implanted prostate markers. Our developed system first determined 2D projection locations of these markers and then 3D prostate translation and rotation via 2D/3D registration of the markers. Using delivery log files, our GPU-based Monte Carlo tool (goMC) reconstructed dose corresponding to each triggered image. The calculated 4D dose distributions were further aggregated to yield the delivered dose. Results: We first tested each module in our system. MC dose engine were commissioned to our treatment planning system with dose difference of <0.5%. For motion tracking, 1789 kV projections from 7 patients were acquired. The 2D marker location error was <1 mm. For 3D motion tracking, root mean square (RMS) errors along LR, AP, and CC directions were 0.26mm, 0.36mm, and 0.01mm respectively in simulation studies and 1.99mm, 1.37mm, and 0.22mm in phantom studies. We also tested the entire system workflow. Our system was able to reconstruct delivered dose. Conclusion: We have developed a functional intra-fractional motion tracking and 4D dose re-construction system to support our clinical trial on adaptive high-risk prostate cancer SBRT. Comprehensive evaluations have shown the capability and accuracy of our system.« less
  • Purpose: NSCLC radiotherapy treatment is a trade-off between controlling the tumor while limiting radiation-induced toxicities. Here we identify hierarchical biophysical relationships that could simultaneously influence both local control (LC) and RP by using an integrated Bayesian Networks (BN) approach. Methods: We studied 79 NSCLC patients treated on prospective protocol with 56 cases of LC and 21 events of RP. Beyond dosimetric information, each patient had 193 features including 12 clinical factors, 60 circulating blood cytokines before and during radiotherapy, 62 microRNAs, and 59 single-nucleotide polymorphisms (SNPs). The most relevant biophysical predictors for both LC and RP were identified using amore » Markov blanket local discovery algorithm and the corresponding BN was constructed using a score-learning algorithm. The area under the free-response receiver operating characteristics (AU-FROC) was used for performance evaluation. Cross-validation was employed to guard against overfitting pitfalls. Results: A BN revealing the biophysical interrelationships jointly in terms of LC and RP was developed and evaluated. The integrated BN included two SNPs, one microRNA, one clinical factor, three pre-treatment cytokines, relative changes of two cytokines between pre and during-treatment, and gEUDs of the GTV (a=-20) and lung (a=1). On cross-validation, the AUC prediction of independent LC was 0.85 (95% CI: 0.75–0.95) and RP was 0.83 (0.73–0.92). The AU-FROC of the integrated BN to predict both LC/RP was 0.81 (0.71–0.90) based on 2000 stratified bootstrap, indicating minimal loss in joint prediction power. Conclusions: We developed a new approach for multiple outcome utility application in radiotherapy based on integrated BN techniques. The BN developed from large-scale retrospective data is able to simultaneously predict LC and RP in NSCLC treatments based on individual patient characteristics. The joint prediction is only slightly compromised compared to independent predictions. Our approach shows promise for use in clinical decision support system for personalized radiotherapy subject to multiple endpoints. These studies were supported by a grant from the NCI/NIH P01-CA59827.« less