skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer

Abstract

Purpose: To determine whether blood oxygenation level dependent (BOLD) MRI signal measured in prostate cancer patients, in addition to quantitative diffusion and perfusion parameters from multiparametric (mp)MRI exams, can help discriminate aggressive and/or radioresistant lesions. Methods: Several ongoing clinical trials in our institution require mpMRI exam to determine eligibility (presence of identifiable tumor lesion on mpMRI) and prostate volumes for dose escalation. Upon consent, patients undergo fiducial markers placement and a T2*-weighted imaging at the time of CT sim to facilitate the fusion. In a retrospective analysis eleven clinical trial patients were identified who had undergone mpMRI on GE 3T magnet, followed by T2*-weighted imaging (time-period mean±SD = 48±20 days) using a consistent protocol (gradient echo, TR/TE=30/11.8ms, flip angle=12, matrix=256×256×75, voxel size=1.25×1.25×2.5mm). ROIs for prostate tumor lesions were automatically determined using ADC threshold ≤1200 µm2/s. Although the MR protocol was not intended for BOLD analysis, we utilized the T2*-weighted signal normalized to that in nearby muscle; likewise, T2-weighted lesion signal was normalized to muscle, following rigid registration of the T2 to T2* images. The ratio of these normalized signals, T2*/T2, is a measure of BOLD effect in the prostate tumors. Perfusion parameters (Ktrans, ve, kep) were also calculated. Results: T2*/T2more » (mean±SE) was found to be substantially lower for Gleason score (GS) 8&9 (0.82±0.04) compared to GS 7 (1.08±0.07). A k-means cluster analysis of T2*/T2 versus kep = Ktrans/ve revealed two distinct clusters, one with higher T2*/T2 and lower kep, containing only GS 7 lesions, and another with lower T2*/T2 and higher kep, associated with tumor aggressiveness. This latter cluster contained all GS 8&9 lesions, as well as some GS 7. Conclusion: BOLD MRI, in addition to ADC and kep, may play a role (perhaps orthogonal to Gleason score) in identifying prostate lesions that would benefit from more aggressive radiotherapy.« less

Authors:
; ; ; ; ; ;  [1]
  1. University of Miami Miller School of Medicine, Miami, FL (United States)
Publication Date:
OSTI Identifier:
22624394
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; BLOOD; CLINICAL TRIALS; COMPUTERIZED TOMOGRAPHY; FIDUCIAL MARKERS; IMAGES; MASS SPECTROSCOPY; MUSCLES; NEOPLASMS; NMR IMAGING; PATIENTS; PROSTATE; RADIOSENSITIVITY; RADIOTHERAPY; SIGNALS

Citation Formats

Ford, J, Lopez, C, Tschudi, Y, Breto, A, Padgett, K, Pollack, A, and Stoyanova, R. SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer. United States: N. p., 2016. Web. doi:10.1118/1.4955650.
Ford, J, Lopez, C, Tschudi, Y, Breto, A, Padgett, K, Pollack, A, & Stoyanova, R. SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer. United States. doi:10.1118/1.4955650.
Ford, J, Lopez, C, Tschudi, Y, Breto, A, Padgett, K, Pollack, A, and Stoyanova, R. 2016. "SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer". United States. doi:10.1118/1.4955650.
@article{osti_22624394,
title = {SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer},
author = {Ford, J and Lopez, C and Tschudi, Y and Breto, A and Padgett, K and Pollack, A and Stoyanova, R},
abstractNote = {Purpose: To determine whether blood oxygenation level dependent (BOLD) MRI signal measured in prostate cancer patients, in addition to quantitative diffusion and perfusion parameters from multiparametric (mp)MRI exams, can help discriminate aggressive and/or radioresistant lesions. Methods: Several ongoing clinical trials in our institution require mpMRI exam to determine eligibility (presence of identifiable tumor lesion on mpMRI) and prostate volumes for dose escalation. Upon consent, patients undergo fiducial markers placement and a T2*-weighted imaging at the time of CT sim to facilitate the fusion. In a retrospective analysis eleven clinical trial patients were identified who had undergone mpMRI on GE 3T magnet, followed by T2*-weighted imaging (time-period mean±SD = 48±20 days) using a consistent protocol (gradient echo, TR/TE=30/11.8ms, flip angle=12, matrix=256×256×75, voxel size=1.25×1.25×2.5mm). ROIs for prostate tumor lesions were automatically determined using ADC threshold ≤1200 µm2/s. Although the MR protocol was not intended for BOLD analysis, we utilized the T2*-weighted signal normalized to that in nearby muscle; likewise, T2-weighted lesion signal was normalized to muscle, following rigid registration of the T2 to T2* images. The ratio of these normalized signals, T2*/T2, is a measure of BOLD effect in the prostate tumors. Perfusion parameters (Ktrans, ve, kep) were also calculated. Results: T2*/T2 (mean±SE) was found to be substantially lower for Gleason score (GS) 8&9 (0.82±0.04) compared to GS 7 (1.08±0.07). A k-means cluster analysis of T2*/T2 versus kep = Ktrans/ve revealed two distinct clusters, one with higher T2*/T2 and lower kep, containing only GS 7 lesions, and another with lower T2*/T2 and higher kep, associated with tumor aggressiveness. This latter cluster contained all GS 8&9 lesions, as well as some GS 7. Conclusion: BOLD MRI, in addition to ADC and kep, may play a role (perhaps orthogonal to Gleason score) in identifying prostate lesions that would benefit from more aggressive radiotherapy.},
doi = {10.1118/1.4955650},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To determine whether a relationship exists between the tumor volume (TV) or relative choline content determined using magnetic resonance spectroscopy imaging (MRSI) at 3T and the clinical prognostic parameters for patients with localized prostate cancer (PCa). Methods and Materials: A total of 72 men (mean age, 67.8 {+-} 6.2 years) were stratified as having low-risk (n = 26), intermediate-risk (n = 24), or high-risk (n = 22) PCa. MRSI was performed at 3T using a phased-array coil. Spectra are expressed as the total choline/citrate, total choline plus creatine/citrate, and total choline plus polyamines plus creatine/citrate ratios. The mean ratiomore » of the most pathologic voxels and the MRSI-based TV were also determined. Results: The mean values of the total choline/citrate, total choline plus creatine/citrate, and total choline plus polyamine plus creatine/citrate ratios were greater for Stage T2b or greater tumors vs. Stage T2a or less tumors: 7.53 {+-} 13.60 vs. 2.31 {+-} 5.65 (p = .018), 8.98 {+-} 14.58 vs. 2.56 {+-} 5.70 (p = .016), and 10.32 {+-} 15.47 vs. 3.55 {+-} 6.16 (p = .014), respectively. The mean MRSI-based TV for Stage T2b or greater and Stage T2a or less tumors was significantly different (2.23 {+-} 2.62 cm{sup 3} vs. 1.26 {+-} 2.06 cm{sup 3}, respectively; p = .030). This TV correlated with increased prostate-specific antigen levels (odds ratio, 1.293; p = .012). Patients with high-risk PCa had a larger TV than did the patients with intermediate-risk PCa. A similar result was found for the intermediate-risk group compared with the low-risk group (odds ratio, 1.225; p = .041). Conclusion: Biomarkers expressing the relative choline content and TV were significant parameters for the localization of PCa and could be helpful for determining the prognosis more accurately.« less
  • Purpose: To evaluate the feasibility, tolerance, and preliminary outcome of an open MRI-guided prostate partial-volume high-dose-rate brachytherapy (HDR-BT) schedule in a group of selected patients with nonmetastatic, locally aggressive prostatic tumors. Methods and Materials: After conventional fractionated three-dimensional conformal external radiotherapy to 64-64.4 Gy, 77 patients with nonmetastatic, locally aggressive (e.g., perineural invasion and/or Gleason score 8-10) prostate cancer were treated from June 2000 to August 2004, with HDR-BT using temporary open MRI-guided {sup 192}Ir implants, to escalate the dose in the boost region. Nineteen, 21, and 37 patients were sequentially treated with 2 fractions of 6 Gy, 7 Gy,more » and 8 Gy each, respectively. Neoadjuvant androgen deprivation was given to 62 patients for 6-24 months. Acute and late toxicity were scored according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scoring system. Results: All 77 patients completed treatment as planned. Only 2 patients presented with Grade >=3 acute urinary toxicity. The 3-year probability of Grade >=2 late urinary and low gastrointestinal toxicity-free survival was 91.4% +- 3.4% and 94.4% +- 2.7%, respectively. Rates of 3-year biochemical disease-free survival (bDFS) and disease-specific survival were 87.1% +- 4.1% and 100%, respectively. Conclusions: Boosting a partial volume of the prostate with hypofractionated HDR-BT for aggressive prostate cancer was feasible and showed limited long-term toxicity, which compared favorably with other dose-escalation methods in the literature. Preliminary bDFS was encouraging if one considers the negatively selected population of high-risk patients in this study.« less
  • The peptides orexin-A and orexin-B and their G protein-coupled OX1 and OX2 receptors are involved in multiple physiological processes in the central nervous system and peripheral organs. Altered expression or signaling dysregulation of orexins and their receptors have been associated with a wide range of human diseases including narcolepsy, obesity, drug addiction, and cancer. Although orexin-A, its precursor molecule prepro-orexin and OX1 receptor have been detected in the human normal and hyperplastic prostate tissues, their expression and function in the prostate cancer (PCa) remains to be addressed. Here, we demonstrate for the first time the immunohistochemical localization of orexin-A inmore » human PCa specimens, and the expression of prepro-orexin and OX1 receptor at both protein and mRNA levels in these tissues. Orexin-A administration to the human androgen-dependent prostate carcinoma cells LNCaP up-regulates OX1 receptor expression resulting in a decrease of cell survival. Noteworthy, nanomolar concentrations of the peptide counteract the testosterone-induced nuclear translocation of the androgen receptor in the cells: the orexin-A action is prevented by the addition of the OX1 receptor antagonist SB-408124 to the test system. These findings indicate that orexin-A/OX1 receptor interaction interferes with the activity of the androgen receptor which regulates PCa onset and progression, thus suggesting that orexin-A and its receptor might represent novel therapeutic targets to challenge this aggressive cancer. - Highlights: • Orexin-A and OX1 receptor are present in human cancer prostate tissues. • Orexin-A up-regulates OX1 receptor expression in LNCaP cells. • Orexin-A inhibits testosterone-induced nuclear translocation of androgen receptor.« less
  • Purpose: To investigate the maximum tumor diameter (MTD) of the dominant prostate cancer nodule in the radical prostatectomy specimen as a prognostic factor for outcome in patients treated with salvage external beam radiation therapy (SRT) for a rising prostate-specific antigen (PSA) value after radical prostatectomy. Methods and Materials: From an institutional cohort of 575 patients treated with SRT, data on MTD were retrospectively collected. The impact of MTD on biochemical failure (BF), metastasis, and prostate cancer-specific mortality (PCSM) was assessed on univariate and multivariate analysis using Kaplan-Meier and Cox proportional hazards models. Results: In the 173 patients with MTD datamore » available, median follow-up was 77 months (interquartile range, 47-104 months) after SRT, and median MTD was 18 mm (interquartile range, 13-22 mm). Increasing MTD correlated with increasing pT stage, Gleason score, presence of seminal vesicle invasion, and lymph node invasion. Receiver operating characteristic curve analysis identified MTD of >14 mm to be the optimal cut-point. On univariate analysis, MTD >14 mm was associated with an increased risk of BF (P=.02, hazard ratio [HR] 1.8, 95% confidence interval [CI] 1.2-2.8), metastasis (P=.002, HR 4.0, 95% CI 2.1-7.5), and PCSM (P=.02, HR 8.0, 95% CI 2.9-21.8). On multivariate analysis MTD >14 mm remained associated with increased BF (P=.02, HR 1.9, 95% CI 1.1-3.2), metastasis (P=.02, HR 3.4, 95% CI 1.2-9.2), and PCSM (P=.05, HR 9.7, 95% CI 1.0-92.4), independent of extracapsular extension, seminal vesicle invasion, positive surgical margins, pre-RT PSA value, Gleason score, and pre-RT PSA doubling time. Conclusions: For patients treated with SRT for a rising PSA value after prostatectomy, MTD at time of radical prostatectomy is independently associated with BF, metastasis, and PCSM. Maximum tumor diameter should be incorporated into clinical decision making and future clinical risk assessment tools for those patients receiving SRT.« less
  • No abstract prepared.