skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-D-202-04: Validation of Deformable Image Registration Algorithms for Head and Neck Adaptive Radiotherapy in Routine Clinical Setting

Abstract

Purpose: To evaluate the ROI contours and accumulated dose difference using different deformable image registration (DIR) algorithms for head and neck (H&N) adaptive radiotherapy. Methods: Eight H&N cancer patients were randomly selected from the affiliated hospital. During the treatment, patients were rescanned every week with ROIs well delineated by radiation oncologist on each weekly CT. New weekly treatment plans were also re-designed with consistent dose prescription on the rescanned CT and executed for one week on Siemens CT-on-rails accelerator. At the end, we got six weekly CT scans from CT1 to CT6 including six weekly treatment plans for each patient. The primary CT1 was set as the reference CT for DIR proceeding with the left five weekly CTs using ANACONDA and MORFEUS algorithms separately in RayStation and the external skin ROI was set to be the controlling ROI both. The entire calculated weekly dose were deformed and accumulated on corresponding reference CT1 according to the deformation vector field (DVFs) generated by the two different DIR algorithms respectively. Thus we got both the ANACONDA-based and MORFEUS-based accumulated total dose on CT1 for each patient. At the same time, we mapped the ROIs on CT1 to generate the corresponding ROIs on CT6more » using ANACONDA and MORFEUS DIR algorithms. DICE coefficients between the DIR deformed and radiation oncologist delineated ROIs on CT6 were calculated. Results: For DIR accumulated dose, PTV D95 and Left-Eyeball Dmax show significant differences with 67.13 cGy and 109.29 cGy respectively (Table1). For DIR mapped ROIs, PTV, Spinal cord and Left-Optic nerve show difference with −0.025, −0.127 and −0.124 (Table2). Conclusion: Even two excellent DIR algorithms can give divergent results for ROI deformation and dose accumulation. As more and more TPS get DIR module integrated, there is an urgent need to realize the potential risk using DIR in clinical.« less

Authors:
; ; ;  [1];  [1];  [2];  [3]; ; ;  [4]
  1. University of Science and Technology of China, Hefei, Anhui (China)
  2. (China)
  3. Saint Vincent Medical Center, Bridgeport, CT (United States)
  4. The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui (China)
Publication Date:
OSTI Identifier:
22624391
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ACCELERATORS; ALGORITHMS; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; HEAD; HOSPITALS; IMAGE PROCESSING; IMAGES; MEDICAL PERSONNEL; NECK; NEOPLASMS; PATIENTS; RADIATION DOSES; RADIOTHERAPY; SKIN; SPINAL CORD; VALIDATION

Citation Formats

Zhang, L, Pi, Y, Chen, Z, Xu, X, Wang, Z, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, Shi, C, Long, T, Luo, W, and Wang, F. SU-D-202-04: Validation of Deformable Image Registration Algorithms for Head and Neck Adaptive Radiotherapy in Routine Clinical Setting. United States: N. p., 2016. Web. doi:10.1118/1.4955644.
Zhang, L, Pi, Y, Chen, Z, Xu, X, Wang, Z, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, Shi, C, Long, T, Luo, W, & Wang, F. SU-D-202-04: Validation of Deformable Image Registration Algorithms for Head and Neck Adaptive Radiotherapy in Routine Clinical Setting. United States. doi:10.1118/1.4955644.
Zhang, L, Pi, Y, Chen, Z, Xu, X, Wang, Z, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, Shi, C, Long, T, Luo, W, and Wang, F. 2016. "SU-D-202-04: Validation of Deformable Image Registration Algorithms for Head and Neck Adaptive Radiotherapy in Routine Clinical Setting". United States. doi:10.1118/1.4955644.
@article{osti_22624391,
title = {SU-D-202-04: Validation of Deformable Image Registration Algorithms for Head and Neck Adaptive Radiotherapy in Routine Clinical Setting},
author = {Zhang, L and Pi, Y and Chen, Z and Xu, X and Wang, Z and The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui and Shi, C and Long, T and Luo, W and Wang, F},
abstractNote = {Purpose: To evaluate the ROI contours and accumulated dose difference using different deformable image registration (DIR) algorithms for head and neck (H&N) adaptive radiotherapy. Methods: Eight H&N cancer patients were randomly selected from the affiliated hospital. During the treatment, patients were rescanned every week with ROIs well delineated by radiation oncologist on each weekly CT. New weekly treatment plans were also re-designed with consistent dose prescription on the rescanned CT and executed for one week on Siemens CT-on-rails accelerator. At the end, we got six weekly CT scans from CT1 to CT6 including six weekly treatment plans for each patient. The primary CT1 was set as the reference CT for DIR proceeding with the left five weekly CTs using ANACONDA and MORFEUS algorithms separately in RayStation and the external skin ROI was set to be the controlling ROI both. The entire calculated weekly dose were deformed and accumulated on corresponding reference CT1 according to the deformation vector field (DVFs) generated by the two different DIR algorithms respectively. Thus we got both the ANACONDA-based and MORFEUS-based accumulated total dose on CT1 for each patient. At the same time, we mapped the ROIs on CT1 to generate the corresponding ROIs on CT6 using ANACONDA and MORFEUS DIR algorithms. DICE coefficients between the DIR deformed and radiation oncologist delineated ROIs on CT6 were calculated. Results: For DIR accumulated dose, PTV D95 and Left-Eyeball Dmax show significant differences with 67.13 cGy and 109.29 cGy respectively (Table1). For DIR mapped ROIs, PTV, Spinal cord and Left-Optic nerve show difference with −0.025, −0.127 and −0.124 (Table2). Conclusion: Even two excellent DIR algorithms can give divergent results for ROI deformation and dose accumulation. As more and more TPS get DIR module integrated, there is an urgent need to realize the potential risk using DIR in clinical.},
doi = {10.1118/1.4955644},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreementmore » of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours.” Conclusions: Use of DIR-based contour propagation in the routine clinical setting is expected to increase the efficiency of H and N replanning, reducing the amount of time needed for manual target and organ delineations.« less
  • Purpose: To develop a three-dimensional (3D) deformable head-and-neck (H and N) phantom with realistic tissue contrast for both kilovoltage (kV) and megavoltage (MV) imaging modalities and use it to objectively evaluate deformable image registration (DIR) algorithms. Methods: The phantom represents H and N patient anatomy. It is constructed from thermoplastic, which becomes pliable in boiling water, and hardened epoxy resin. Using a system of additives, the Hounsfield unit (HU) values of these materials were tuned to mimic anatomy for both kV and MV imaging. The phantom opens along a sagittal midsection to reveal radiotransparent markers, which were used to characterizemore » the phantom deformation. The deformed and undeformed phantoms were scanned with kV and MV imaging modalities. Additionally, a calibration curve was created to change the HUs of the MV scans to be similar to kV HUs, (MC). The extracted ground-truth deformation was then compared to the results of two commercially available DIR algorithms, from Velocity Medical Solutions and MIM software. Results: The phantom produced a 3D deformation, representing neck flexion, with a magnitude of up to 8 mm and was able to represent tissue HUs for both kV and MV imaging modalities. The two tested deformation algorithms yielded vastly different results. For kV–kV registration, MIM produced mean and maximum errors of 1.8 and 11.5 mm, respectively. These same numbers for Velocity were 2.4 and 7.1 mm, respectively. For MV–MV, kV–MV, and kV–MC Velocity produced similar mean and maximum error values. MIM, however, produced gross errors for all three of these scenarios, with maximum errors ranging from 33.4 to 41.6 mm. Conclusions: The application of DIR across different imaging modalities is particularly difficult, due to differences in tissue HUs and the presence of imaging artifacts. For this reason, DIR algorithms must be validated specifically for this purpose. The developed H and N phantom is an effective tool for this purpose.« less
  • Purpose: Three deformable image registration (DIR) algorithms are utilized to perform deformable dose accumulation for head and neck tomotherapy treatment, and the differences of the accumulated doses are evaluated. Methods: Daily MVCT data for 10 patients with pathologically proven nasopharyngeal cancers were analyzed. The data were acquired using tomotherapy (TomoTherapy, Accuray) at the PLA General Hospital. The prescription dose to the primary target was 70Gy in 33 fractions.Three DIR methods (B-spline, Diffeomorphic Demons and MIMvista) were used to propagate parotid structures from planning CTs to the daily CTs and accumulate fractionated dose on the planning CTs. The mean accumulated dosesmore » of parotids were quantitatively compared and the uncertainties of the propagated parotid contours were evaluated using Dice similarity index (DSI). Results: The planned mean dose of the ipsilateral parotids (32.42±3.13Gy) was slightly higher than those of the contralateral parotids (31.38±3.19Gy)in 10 patients. The difference between the accumulated mean doses of the ipsilateral parotids in the B-spline, Demons and MIMvista deformation algorithms (36.40±5.78Gy, 34.08±6.72Gy and 33.72±2.63Gy ) were statistically significant (B-spline vs Demons, P<0.0001, B-spline vs MIMvista, p =0.002). And The difference between those of the contralateral parotids in the B-spline, Demons and MIMvista deformation algorithms (34.08±4.82Gy, 32.42±4.80Gy and 33.92±4.65Gy ) were also significant (B-spline vs Demons, p =0.009, B-spline vs MIMvista, p =0.074). For the DSI analysis, the scores of B-spline, Demons and MIMvista DIRs were 0.90, 0.89 and 0.76. Conclusion: Shrinkage of parotid volumes results in the dose increase to the parotid glands in adaptive head and neck radiotherapy. The accumulated doses of parotids show significant difference using the different DIR algorithms between kVCT and MVCT. Therefore, the volume-based criterion (i.e. DSI) as a quantitative evaluation of registration accuracy is essential besides the visual assessment by the treating physician. This work was supported in part by the grant from Chinese Natural Science Foundation (Grant No. 11105225)« less
  • Purposes: To systematically monitor anatomic variations and their dosimetric consequences during head-and-neck (H'N) radiation therapy using a GPU-based deformable image registration (DIR) framework. Methods: Eleven H'N IMRT patients comprised the subject population. The daily megavoltage CT and weekly kVCT scans were acquired for each patient. The pre-treatment CTs were automatically registered with their corresponding planning CT through an in-house GPU-based DIR framework. The deformation of each contoured structure was computed to account for non-rigid change in the patient setup. The Jacobian determinant for the PTVs and critical structures was used to quantify anatomical volume changes. Dose accumulation was performed tomore » determine the actual delivered dose and dose accumulation. A landmark tool was developed to determine the uncertainty in the dose distribution due to registration error. Results: Dramatic interfraction anatomic changes leading to dosimetric variations were observed. During the treatment courses of 6–7 weeks, the parotid gland volumes changed up to 34.7%, the center-of-mass displacement of the two parotids varied in the range of 0.9–8.8mm. Mean doses were within 5% and 3% of the planned mean doses for all PTVs and CTVs, respectively. The cumulative minimum/mean/EUD doses were lower than the planned doses by 18%, 2%, and 7%, respectively for the PTV1. The ratio of the averaged cumulative cord maximum doses to the plan was 1.06±0.15. The cumulative mean doses assessed by the weekly kVCTs were significantly higher than the planned dose for the left-parotid (p=0.03) and right-parotid gland (p=0.006). The computation time was nearly real-time (∼ 45 seconds) for registering each pre-treatment CT to the planning CT and dose accumulation with registration accuracy (for kVCT) at sub-voxel level (<1.5mm). Conclusions: Real-time assessment of anatomic and dosimetric variations is feasible using the GPU-based DIR framework. Clinical implementation of this technology may enable timely plan adaption and potentially lead to improved outcome.« less