skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-D-204-07: Retrospective Correlation of Dose Accuracy with Regions of Local Failure for Early Stage Lung Cancer Patients Treated with Stereotactic Body Radiotherapy

Abstract

Purpose: To correlate dose distributions computed using six algorithms for recurrent early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT), with outcome (local failure). Methods: Of 270 NSCLC patients treated with 12Gyx4, 20 were found to have local recurrence prior to the 2-year time point. These patients were originally planned with 1-D pencil beam (1-D PB) algorithm. 4D imaging was performed to manage tumor motion. Regions of local failures were determined from follow-up PET-CT scans. Follow-up CT images were rigidly fused to the planning CT (pCT), and recurrent tumor volumes (Vrecur) were mapped to the pCT. Dose was recomputed, retrospectively, using five algorithms: 3-D PB, collapsed cone convolution (CCC), anisotropic analytical algorithm (AAA), AcurosXB, and Monte Carlo (MC). Tumor control probability (TCP) was computed using the Marsden model (1,2). Patterns of failure were classified as central, in-field, marginal, and distant for Vrecur ≥95% of prescribed dose, 95–80%, 80–20%, and ≤20%, respectively (3). Results: Average PTV D95 (dose covering 95% of the PTV) for 3-D PB, CCC, AAA, AcurosXB, and MC relative to 1-D PB were 95.3±2.1%, 84.1±7.5%, 84.9±5.7%, 86.3±6.0%, and 85.1±7.0%, respectively. TCP values for 1-D PB, 3-D PB, CCC, AAA, AcurosXB, and MC weremore » 98.5±1.2%, 95.7±3.0, 79.6±16.1%, 79.7±16.5%, 81.1±17.5%, and 78.1±20%, respectively. Patterns of local failures were similar for 1-D and 3D PB plans, which predicted that the majority of failures occur in centraldistal regions, with only ∼15% occurring distantly. However, with convolution/superposition and MC type algorithms, the majority of failures (65%) were predicted to be distant, consistent with the literature. Conclusion: Based on MC and convolution/superposition type algorithms, average PTV D95 and TCP were ∼15% lower than the planned 1-D PB dose calculation. Patterns of failure results suggest that MC and convolution/superposition type algorithms predict different outcomes for patterns of failure relative to PB algorithms. Work supported in part by Varian Medical Systems, Palo Alto, CA.« less

Authors:
; ; ; ; ; ;  [1]
  1. Henry Ford Health System, Detroit, MI (United States)
Publication Date:
OSTI Identifier:
22624365
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ACCURACY; ALGORITHMS; ANISOTROPY; BEAMS; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; CORRELATIONS; FAILURES; LUNGS; MONTE CARLO METHOD; NEOPLASMS; PATIENTS; POSITRON COMPUTED TOMOGRAPHY; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Devpura, S, Li, H, Liu, C, Fraser, C, Ajlouni, M, Movsas, B, and Chetty, I. SU-D-204-07: Retrospective Correlation of Dose Accuracy with Regions of Local Failure for Early Stage Lung Cancer Patients Treated with Stereotactic Body Radiotherapy. United States: N. p., 2016. Web. doi:10.1118/1.4955612.
Devpura, S, Li, H, Liu, C, Fraser, C, Ajlouni, M, Movsas, B, & Chetty, I. SU-D-204-07: Retrospective Correlation of Dose Accuracy with Regions of Local Failure for Early Stage Lung Cancer Patients Treated with Stereotactic Body Radiotherapy. United States. doi:10.1118/1.4955612.
Devpura, S, Li, H, Liu, C, Fraser, C, Ajlouni, M, Movsas, B, and Chetty, I. 2016. "SU-D-204-07: Retrospective Correlation of Dose Accuracy with Regions of Local Failure for Early Stage Lung Cancer Patients Treated with Stereotactic Body Radiotherapy". United States. doi:10.1118/1.4955612.
@article{osti_22624365,
title = {SU-D-204-07: Retrospective Correlation of Dose Accuracy with Regions of Local Failure for Early Stage Lung Cancer Patients Treated with Stereotactic Body Radiotherapy},
author = {Devpura, S and Li, H and Liu, C and Fraser, C and Ajlouni, M and Movsas, B and Chetty, I},
abstractNote = {Purpose: To correlate dose distributions computed using six algorithms for recurrent early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT), with outcome (local failure). Methods: Of 270 NSCLC patients treated with 12Gyx4, 20 were found to have local recurrence prior to the 2-year time point. These patients were originally planned with 1-D pencil beam (1-D PB) algorithm. 4D imaging was performed to manage tumor motion. Regions of local failures were determined from follow-up PET-CT scans. Follow-up CT images were rigidly fused to the planning CT (pCT), and recurrent tumor volumes (Vrecur) were mapped to the pCT. Dose was recomputed, retrospectively, using five algorithms: 3-D PB, collapsed cone convolution (CCC), anisotropic analytical algorithm (AAA), AcurosXB, and Monte Carlo (MC). Tumor control probability (TCP) was computed using the Marsden model (1,2). Patterns of failure were classified as central, in-field, marginal, and distant for Vrecur ≥95% of prescribed dose, 95–80%, 80–20%, and ≤20%, respectively (3). Results: Average PTV D95 (dose covering 95% of the PTV) for 3-D PB, CCC, AAA, AcurosXB, and MC relative to 1-D PB were 95.3±2.1%, 84.1±7.5%, 84.9±5.7%, 86.3±6.0%, and 85.1±7.0%, respectively. TCP values for 1-D PB, 3-D PB, CCC, AAA, AcurosXB, and MC were 98.5±1.2%, 95.7±3.0, 79.6±16.1%, 79.7±16.5%, 81.1±17.5%, and 78.1±20%, respectively. Patterns of local failures were similar for 1-D and 3D PB plans, which predicted that the majority of failures occur in centraldistal regions, with only ∼15% occurring distantly. However, with convolution/superposition and MC type algorithms, the majority of failures (65%) were predicted to be distant, consistent with the literature. Conclusion: Based on MC and convolution/superposition type algorithms, average PTV D95 and TCP were ∼15% lower than the planned 1-D PB dose calculation. Patterns of failure results suggest that MC and convolution/superposition type algorithms predict different outcomes for patterns of failure relative to PB algorithms. Work supported in part by Varian Medical Systems, Palo Alto, CA.},
doi = {10.1118/1.4955612},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To investigate pulmonary radiologic changes after lung stereotactic body radiotherapy (SBRT), to distinguish between mass-like fibrosis and tumor recurrence. Methods and Materials: Eighty consecutive patients treated with 3- to 5-fraction SBRT for early-stage peripheral non-small cell lung cancer with a minimum follow-up of 12 months were reviewed. The mean biologic equivalent dose received was 150 Gy (range, 78-180 Gy). Patients were followed with serial CT imaging every 3 months. The CT appearance of consolidation was defined as diffuse or mass-like. Progressive disease on CT was defined according to Response Evaluation Criteria in Solid Tumors 1.1. Positron emission tomography (PET)more » CT was used as an adjunct test. Tumor recurrence was defined as a standardized uptake value equal to or greater than the pretreatment value. Biopsy was used to further assess consolidation in select patients. Results: Median follow-up was 24 months (range, 12.0-36.0 months). Abnormal mass-like consolidation was identified in 44 patients (55%), whereas diffuse consolidation was identified in 12 patients (15%), at a median time from end of treatment of 10.3 months and 11.5 months, respectively. Tumor recurrence was found in 35 of 44 patients with mass-like consolidation using CT alone. Combined with PET, 10 of the 44 patients had tumor recurrence. Tumor size (hazard ratio 1.12, P=.05) and time to consolidation (hazard ratio 0.622, P=.03) were predictors for tumor recurrence. Three consecutive increases in volume and increasing volume at 12 months after treatment in mass-like consolidation were highly specific for tumor recurrence (100% and 80%, respectively). Patients with diffuse consolidation were more likely to develop grade {>=}2 pneumonitis (odds ratio 26.5, P=.02) than those with mass-like consolidation (odds ratio 0.42, P=.07). Conclusion: Incorporating the kinetics of mass-like consolidation and PET to the current criteria for evaluating posttreatment response will increase the likelihood of correctly identifying patients with progressive disease after lung SBRT.« less
  • Purpose: To validate the use of stereotactic body radiotherapy (SBRT) using intensity-modulated radiotherapy (IMRT) beams for medically inoperable Stage I lung cancer. Methods and Materials: From February 2004 to November 2006, a total of 26 patients with 28 lesions received SBRT using a Novalis/BrainLAB system. Immobilization involved a Bodyfix vacuum cushion. A weighted abdominal belt limited respiratory excursion. Computed tomographic simulation images were acquired at rest, full inhalation, and full exhalation and were merged to generate an internal gross tumor volume (ITV). Dose was prescribed to cover the planning target volume (PTV), defined as PTV = ITV + 3-5 mmmore » set-up margin. Heterogeneity corrections were used. Delivery of 50 Gy in five sequential fractions typically used seven nonopposing, noncoplanar beams. Image-guided target verification was provided by BrainLAB-ExacTrac. Results: Among the 26 patients, the mean age was 74 years (range, 49-88 years). Of the patients, 50% were male and 50% female. The median Karnofsky performance status was 70 (range, 40-100). The median follow-up was 30.9 months (range, 10.4-51.4 months). Tissue diagnosis was contraindicated in seven patients (26.9%). There were 22 T1 (78.6%) and six T2 (21.4%) tumors. The median conformality index was 1.38 (range, 1.12-1.8). The median heterogeneity index was 1.08 (range, 1.04-1.2). One patient (3.6%) developed acute Grade 3 dyspnea and one patient developed late Grade 2 chest wall pain. Actuarial local control and overall survival at 3 years were 94.4% and 52%, respectively. Conclusions: Use of IMRT-based delivery of SBRT using restriction of tumor motion in medically inoperable lung cancer demonstrates excellent local control and favorable survival.« less
  • Purpose: To explore once-weekly stereotactic body radiotherapy (SBRT) in nonoperable patients with localized, locally advanced, or metastatic lung cancer. Methods and Materials: A total of 102 primary (89 untreated plus 13 recurrent) and 7 metastatic tumors were studied. The median follow-up was 38 months, the average patient age was 75 years. Of the 109 tumors studied, 60 were Stage I (45 IA and 15 IB), 9 were Stage II, 30 were Stage III, 3 were Stage IV, and 7 were metastases. SBRT only was given in 73% (40 Gy in four fractions to the planning target volume to a totalmore » dose of 53 Gy to the isocenter for a biologically effective dose of 120 Gy{sub 10}). SBRT was given as a boost in 27% (22.5 Gy in three fractions once weekly for a dose of 32 Gy at the isocenter) after 45 Gy in 25 fractions to the primary plus the mediastinum. The total biologically effective dose was 120 Gy{sub 10}. Respiration gating was used in 46%. Results: The overall response rate was 75%; 33% had a complete response. The overall response rate was 89% for Stage IA patients (40% had a complete response). The local control rate was 82%; it was 100% and 93% for Stage IA and IB patients, respectively. The failure rate was 37%, with 17% within the planning target volume. No Grade 3-4 acute toxicities developed in any patient; 12% and 7% of patients developed Grade 1 and 2 toxicities, respectively. Late toxicity, all Grade 2, developed in 3% of patients. The 5-year cause-specific survival rate for Stage I was 70% and was 74% and 64% for Stage IA and IB patients, respectively. The 3-year Stage III cause-specific survival rate was 30%. The patients with metastatic lung cancer had a 57% response rate, a 27% complete response rate, an 86% local control rate, a median survival time of 19 months, and 23% 3-year survival rate. Conclusions: SBRT is noninvasive, convenient, fast, and economically attractive; it achieves results similar to surgery for early or metastatic lung cancer patients who are older, debilitated, and with comorbidities. Elderly patients and/or patients medically unfit for combined modality therapy with locally advanced disease can find an effective palliative alternative in SBRT.« less
  • Purpose: Quantification of volume changes on CBCT during SBRT for NSCLC may provide a useful radiological marker for radiation response and adaptive treatment planning, but the reproducibility of CBCT volume delineation is a concern. This study is to quantify inter-scan/inter-observer variability in tumor volume delineation on CBCT. Methods: Twenty earlystage (stage I and II) NSCLC patients were included in this analysis. All patients were treated with SBRT with a median dose of 54 Gy in 3 to 5 fractions. Two physicians independently manually contoured the primary gross tumor volume on CBCTs taken immediately before SBRT treatment (Pre) and after themore » same SBRT treatment (Post). Absolute volume differences (AVD) were calculated between the Pre and Post CBCTs for a given treatment to quantify inter-scan variability, and then between the two observers for a given CBCT to quantify inter-observer variability. AVD was also normalized with respect to average volume to obtain relative volume differences (RVD). Bland-Altman approach was used to evaluate variability. All statistics were calculated with SAS version 9.4. Results: The 95% limit of agreement (mean ± 2SD) on AVD and RVD measurements between Pre and Post scans were −0.32cc to 0.32cc and −0.5% to 0.5% versus −1.9 cc to 1.8 cc and −15.9% to 15.3% for the two observers respectively. The 95% limit of agreement of AVD and RVD between the two observers were −3.3 cc to 2.3 cc and −42.4% to 28.2% respectively. The greatest variability in inter-scan RVD was observed with very small tumors (< 5 cc). Conclusion: Inter-scan variability in RVD is greatest with small tumors. Inter-observer variability was larger than inter-scan variability. The 95% limit of agreement for inter-observer and inter-scan variability (∼15–30%) helps define a threshold for clinically meaningful change in tumor volume to assess SBRT response, with larger thresholds needed for very small tumors. Part of the work was funded by a Kaye award; Disclosure/Conflict of interest: Raymond H. Mak: Stock ownership: Celgene, Inc. Consulting: Boehringer-Ingelheim, Inc.« less
  • Purpose: Routine assessment was made of tumor metabolic activity as measured by 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in Stage I non-small-cell lung cancer (NSCLC). This report describes PET correlates prospectively collected after stereotactic body radiotherapy (SBRT) for patients with medically inoperable NSCLC. Methods and Materials: 14 consecutive patients with medically inoperable Stage I NSCLC were enrolled. All patients received SBRT to 60-66 Gy in three fractions. Patients underwent serial planned FDG-PET/computed tomography fusion imaging before SBRT and at 2, 26, and 52 weeks after SBRT. Results: With median follow-up of 30.2 months, no patients experienced local failure. One patientmore » developed regional failure, 1 developed distant failure, and 1 developed a second primary. The median tumor maximum standardized uptake value (SUV{sub max}) before SBRT was 8.70. The median SUV{sub max} values at 2, 26, and 52 weeks after SBRT were 6.04, 2.80, and 3.58, respectively. Patients with low pre-SBRT SUV were more likely to experience initial 2-week rises in SUV, whereas patients with high pre-SBRT SUV commonly had SUV declines 2 weeks after treatment (p = 0.036). Six of 13 patients had primary tumor SUV{sub max} >3.5 at 12 months after SBRT but remained without evidence of local disease failure on further follow-up. Conclusions: A substantial proportion of patients may have moderately elevated FDG-PET SUV{sub max} at 12 months without evidence of local failure on further follow-up. Thus, slightly elevated PET SUV{sub max} should not be considered a surrogate for local treatment failure. Our data do not support routine serial FDG-PET/computed tomography for follow-up of patients receiving SBRT for Stage I NSCLC.« less