skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

Abstract

Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed with CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41)more » of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.« less

Authors:
; ;  [1]
  1. Medical College of Wisconsin, Milwaukee, WI (United States)
Publication Date:
OSTI Identifier:
22624325
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ACCURACY; ALGORITHMS; COMPUTERIZED TOMOGRAPHY; DECISION TREE ANALYSIS; ERRORS; GROUND TRUTH MEASUREMENTS; IMAGES; NEOPLASMS; OPTIMIZATION; PATIENTS; PLANNING; PROSTATE; RADIOTHERAPY; RECTUM

Citation Formats

Zhang, J, Ates, O, and Li, X. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy. United States: N. p., 2016. Web. doi:10.1118/1.4955564.
Zhang, J, Ates, O, & Li, X. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy. United States. doi:10.1118/1.4955564.
Zhang, J, Ates, O, and Li, X. 2016. "SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy". United States. doi:10.1118/1.4955564.
@article{osti_22624325,
title = {SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy},
author = {Zhang, J and Ates, O and Li, X},
abstractNote = {Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed with CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.},
doi = {10.1118/1.4955564},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Various studies have demonstrated that online adaptive radiotherapy by real-time re-optimization of the treatment plan can improve organs-at-risk (OARs) sparing in the abdominal region. Its clinical implementation, however, requires fast and accurate auto-segmentation of OARs in CT scans acquired just before each treatment fraction. Autosegmentation is particularly challenging in the abdominal region due to the frequently observed large deformations. We present a clinical validation of a new auto-segmentation method that uses fully automated non-rigid registration for propagating abdominal OAR contours from planning to daily treatment CT scans. Methods: OARs were manually contoured by an expert panel to obtain groundmore » truth contours for repeat CT scans (3 per patient) of 10 patients. For the non-rigid alignment, we used a new non-rigid registration method that estimates the deformation field by optimizing local normalized correlation coefficient with smoothness regularization. This field was used to propagate planning contours to repeat CTs. To quantify the performance of the auto-segmentation, we compared the propagated and ground truth contours using two widely used metrics- Dice coefficient (Dc) and Hausdorff distance (Hd). The proposed method was benchmarked against translation and rigid alignment based auto-segmentation. Results: For all organs, the auto-segmentation performed better than the baseline (translation) with an average processing time of 15 s per fraction CT. The overall improvements ranged from 2% (heart) to 32% (pancreas) in Dc, and 27% (heart) to 62% (spinal cord) in Hd. For liver, kidneys, gall bladder, stomach, spinal cord and heart, Dc above 0.85 was achieved. Duodenum and pancreas were the most challenging organs with both showing relatively larger spreads and medians of 0.79 and 2.1 mm for Dc and Hd, respectively. Conclusion: Based on the achieved accuracy and computational time we conclude that the investigated auto-segmentation method overcomes an important hurdle to the clinical implementation of online adaptive radiotherapy. Partial funding for this work was provided by Accuray Incorporated as part of a research collaboration with Erasmus MC Cancer Institute.« less
  • Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graphmore » cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.« less
  • Purpose: Evaluate the accuracy of atlas-based auto segmentation of organs at risk (OARs) on both helical CT (HCT) and cone beam CT (CBCT) images in head and neck (HN) cancer adaptive radiotherapy (ART). Methods: Six HN patients treated in the ART process were included in this study. For each patient, three images were selected: pretreatment planning CT (PreTx-HCT), in treatment CT for replanning (InTx-HCT) and a CBCT acquired in the same day of the InTx-HCT. Three clinical procedures of auto segmentation and deformable registration performed in the ART process were evaluated: a) auto segmentation on PreTx-HCT using multi-subject atlases, b)more » intra-patient propagation of OARs from PreTx-HCT to InTx-HCT using deformable HCT-to-HCT image registration, and c) intra-patient propagation of OARs from PreTx-HCT to CBCT using deformable CBCT-to-HCT image registration. Seven OARs (brainstem, cord, L/R parotid, L/R submandibular gland and mandible) were manually contoured on PreTx-HCT and InTx-HCT for comparison. In addition, manual contours on InTx-CT were copied on the same day CBCT, and a local region rigid body registration was performed accordingly for each individual OAR. For procedures a) and b), auto contours were compared to manual contours, and for c) auto contours were compared to those rigidly transferred contours on CBCT. Dice similarity coefficients (DSC) and mean surface distances of agreement (MSDA) were calculated for evaluation. Results: For procedure a), the mean DSC/MSDA of most OARs are >80%/±2mm. For intra-patient HCT-to-HCT propagation, the Resultimproved to >85%/±1.5mm. Compared to HCT-to-HCT, the mean DSC for HCT-to-CBCT propagation drops ∼2–3% and MSDA increases ∼0.2mm. This Resultindicates that the inferior imaging quality of CBCT seems only degrade auto propagation performance slightly. Conclusion: Auto segmentation and deformable propagation can generate OAR structures on HCT and CBCT images with clinically acceptable accuracy. Therefore, they can be reliably implemented in the clinical HN ART process.« less
  • Purpose: The purpose of this work was to develop and validate an efficient and automatic strategy to generate online virtual computed tomography (CT) scans for adaptive radiation therapy (ART) in head-and-neck (HN) cancer treatment. Method: We retrospectively analyzed 20 patients, treated with intensity modulated radiation therapy (IMRT), for an HN malignancy. Different anatomical structures were considered: mandible, parotid glands, and nodal gross tumor volume (nGTV). We generated 28 virtualCT scans by means of nonrigid registration of simulation computed tomography (CTsim) and cone beam CT images (CBCTs), acquired for patient setup. We validated our approach by considering the real replanning CTmore » (CTrepl) as ground truth. We computed the Dice coefficient (DSC), center of mass (COM) distance, and root mean square error (RMSE) between correspondent points located on the automatically segmented structures on CBCT and virtualCT. Results: Residual deformation between CTrepl and CBCT was below one voxel. Median DSC was around 0.8 for mandible and parotid glands, but only 0.55 for nGTV, because of the fairly homogeneous surrounding soft tissues and of its small volume. Median COM distance and RMSE were comparable with image resolution. No significant correlation between RMSE and initial or final deformation was found. Conclusion: The analysis provides evidence that deformable image registration may contribute significantly in reducing the need of full CT-based replanning in HN radiation therapy by supporting swift and objective decision-making in clinical practice. Further work is needed to strengthen algorithm potential in nGTV localization.« less
  • Purpose: Radiation therapy has evolved to become not only more precise and potent, but also more complicated to monitor and deliver. More rigorous and comprehensive quality assurance is needed to safeguard ever advancing radiation therapy. ICRU standards dictate that an ever growing set of treatment parameters are manually checked weekly by medical physicists. This “weekly chart check” procedure is laborious and subject to human errors or other factors. A computer-assisted chart checking process will enable more complete and accurate human review of critical parameters, reduce the risk of medical errors, and improve the efficiency. Methods: We developed a web-based softwaremore » system that enables a thorough weekly quality assurance checks. In the backend, the software retrieves all machine parameters from a Treatment Management System (TMS) and compares them against the corresponding ones from the treatment planning system. They are also checked for validity against preset rules. The results are displayed as a web page in the front-end for physicists to review. Then a summary report is generated and uploaded automatically to the TMS as a record for weekly chart checking. Results: The software system has been deployed on a web server in our department’s intranet, and has been tested thoroughly by our clinical physicists. A plan parameter would be highlighted when it is off the preset limit. The developed system has changed the way of checking charts with significantly improved accuracy, efficiency, and completeness. It has been shown to be robust, fast, and easy to use. Conclusion: A computer-assisted system has been developed for efficient, accurate, and comprehensive weekly chart checking. The system has been extensively validated and is being implemented for routine clinical use.« less