skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams

Abstract

Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equal to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R{sub 50} in terms of the depth of 50% CE C{sub 50} is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electronmore » spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R{sub 50} and C{sub 50} (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step towards clinical CE dosimetry.« less

Authors:
;  [1];  [2]
  1. McGill University, Montreal, QC (Canada)
  2. University of Michigan, Ann Arbor, MI (United States)
Publication Date:
OSTI Identifier:
22624312
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACCELERATORS; DEPTH DOSE DISTRIBUTIONS; DOSIMETRY; ELECTRON BEAMS; ELECTRON SPECTRA; IONIZATION CHAMBERS; MONTE CARLO METHOD; RADIATION DOSES; RADIOTHERAPY; SPECIFICATIONS; STOPPING POWER; WATER

Citation Formats

Zlateva, Y, Seuntjens, J, and El Naqa, I. SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams. United States: N. p., 2016. Web. doi:10.1118/1.4955547.
Zlateva, Y, Seuntjens, J, & El Naqa, I. SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams. United States. doi:10.1118/1.4955547.
Zlateva, Y, Seuntjens, J, and El Naqa, I. Wed . "SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams". United States. doi:10.1118/1.4955547.
@article{osti_22624312,
title = {SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams},
author = {Zlateva, Y and Seuntjens, J and El Naqa, I},
abstractNote = {Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equal to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R{sub 50} in terms of the depth of 50% CE C{sub 50} is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R{sub 50} and C{sub 50} (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step towards clinical CE dosimetry.},
doi = {10.1118/1.4955547},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To advance towards clinical Cherenkov emission (CE)-based dosimetry by investigating beam-specific effects on Monte Carlo-calculated electron-beam stopping power-to-CE power ratios (SCRs), addressing electron beam quality specification in terms of CE, and validating simulations with measurements. Methods: The EGSnrc user code SPRRZnrc, used to calculate Spencer-Attix stopping-power ratios, was modified to instead calculate SCRs. SCRs were calculated for 6- to 22-MeV clinical electron beams from Varian TrueBeam, Clinac 21EX, and Clinac 2100C/D accelerators. Experiments were performed with a 20-MeV electron beam from a Varian TrueBeam accelerator, using a diffraction grating spectrometer with optical fiber input and a cooled back-illuminated CCD.more » A fluorophore was dissolved in the water to remove CE signal anisotropy. Results: It was found that angular spread of the incident beam has little effect on the SCR (≤ 0.3% at d{sub max}), while both the electron spectrum and photon contamination increase the SCR at shallow depths and decrease it at large depths. A universal data fit of R{sub 50} in terms of C{sub 50} (50% CE depth) revealed a strong linear dependence (R{sup 2} > 0.9999). The SCR was fit with a Burns-type equation (R{sup 2} = 0.9974, NRMSD = 0.5%). Below-threshold incident radiation was found to have minimal effect on beam quality specification (< 0.1%). Experiments and simulations were in good agreement. Conclusions: Our findings confirm the feasibility of the proposed CE dosimetry method, contingent on computation of SCRs from additional accelerators and on further experimental validation. This work constitutes an important step towards clinical high-resolution out-of-beam CE dosimetry.« less
  • Purpose: Patients who undergo n-BCA glue embolization as part of treatment for AVMs are later referred for proton therapy. Knowing the relative stopping power of the glue accurately allows us to perform accurate dose calculations. In this study we experimentally determine the relative stopping power of an n-BCA mixture in a 126 MeV and 149.6 MeV proton beams. Methods: One unit of the TRUFILL™ n-BCA liquid embolic system consists of 1g unit of n-BCA, 1g unit of Tantalum powder and one 10mL vial of Ethiodized oil. The physician mixed 3:1 Ethiodized oil to n-BCA. Five units (20cc) of the n-BCAmore » liquid embolic glue were prepared and placed in a 6cm x 3cm x3cm Lucite container. The container was placed in front of a water tank in the proton beam path. A diamond detector (active volume 0.004mm3) was used to measure distal edge of depth dose of a modulated 126 MeV proton beam collimated using a 3cm brass aperture. The procedure was repeated with a container carrying the same amount of water placed in front of the water tank. The difference in the depth dose measured with glue and with water was used to determine the relative stopping power of the glue. The same determination was done earlier at 149.6 MeV using a different smaller sample (4cc) of n-BCA. Results: The relative stopping power of this particular n-BCA mixture was determined to be 1.06 at both 126 MeV and 149.6 MeV. We are working on obtaining the composition data of the n-BCA glue so we can perform Monte Carlo calculations. Conclusion: Accurate value of the stopping power of the n-BCA glue in the proton beam was determined to be 1.06. It will improve the accuracy of dose calculations in proton radiosurgery procedures on AVM patients with n-BCA embolization.« less
  • Purpose: To develop a simulation model of a clinical gamma camera/SPECT system and to validate the model using experimental and published measurements from the clinical system. Methods: Geant4 Application for Tomographic Emission (GATE) was used to create a model of the Siemens Symbia gamma camera. A modular model was implemented that allows specifying combinations of crystal thickness (3/8”, 5/8”) and collimator (LEHR, MELP, HE). Shielding, energy resolution, intrinsic resolution, crystal thickness, and collimator properties were set based on manufacturer specifications. Validation of the model was performed by simulating NEMA 2007 gamma camera tests including spatial resolution and sensitivity for Tc99;more » these were compared with experimental and published data for the scanner. The simulated energy spectra of a Tc99 line source in acrylic blocks was visually compared with the corresponding experimental acquisition. For a 4 cm diameter sphere filled with Tc99, the attenuation maps were generated from simulation data, and the photopeak and scatter window were extracted from GATE output using ROOT to create DICOM files to use in the clinical reconstruction. Results: Simulated spatial resolutions for LEHR 3/8” crystal at 0, 10 cm, 10 cm (with scatter), and 30 cm were 4, 6.7, 7.9, and 14.5 mm FWHM; these were 9% less than published data. For 5/8” crystal the spatial resolutions were 4.5, 7.0, 8.5, and 14.7 mm FWHM; these were 4% to 10% less than published data. Simulated sensitivity was within 3.5% of published data for both LEHR 3/8” and 5/8”. The simulated energy spectra matched the photopeak and scatter window well, but did overestimate the counts below 90 keV. The simulated attenuation map and projection data were successfully reconstructed with the clinical software, and the passed visual inspection. Conclusions: Validation of a specific clinical scanner allows future studies of quantification accuracy for both planar and SPECT imaging. Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number R01CA138986. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less
  • Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less
  • Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less