skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multiresolution molecular mechanics: Implementation and efficiency

Journal Article · · Journal of Computational Physics

Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3–8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.

OSTI ID:
22622228
Journal Information:
Journal of Computational Physics, Vol. 328; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9991
Country of Publication:
United States
Language:
English

Similar Records

De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers
Journal Article · Mon Sep 04 00:00:00 EDT 2006 · The International Journal of High Performance Computing Applications, vol. 22, no. 1, February 1, 2008, pp. 113-128 · OSTI ID:22622228

Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.
Technical Report · Mon Sep 01 00:00:00 EDT 2014 · OSTI ID:22622228

Parallel multiscale simulations of a brain aneurysm
Journal Article · Mon Jul 01 00:00:00 EDT 2013 · Journal of Computational Physics · OSTI ID:22622228