skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure

Abstract

The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon. Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.

Authors:
 [1]
  1. Moscow Institute of Physics and Technology (State University) (Russian Federation)
Publication Date:
OSTI Identifier:
22617112
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 123; Journal Issue: 6; Other Information: Copyright (c) 2016 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CAPTURE; CRYSTALS; DEFECTS; DEFORMATION; DIAMONDS; ELECTRIC DIPOLE MOMENTS; ELECTRIC DIPOLES; ELECTRONS; GERMANIUM; MUONIC ATOMS; MUONS; PHONONS; SILICON; SPECTRA; SYMMETRY

Citation Formats

Belousov, Yu. M., E-mail: theorphys@phystech.edu. Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure. United States: N. p., 2016. Web. doi:10.1134/S106377611613001X.
Belousov, Yu. M., E-mail: theorphys@phystech.edu. Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure. United States. doi:10.1134/S106377611613001X.
Belousov, Yu. M., E-mail: theorphys@phystech.edu. Thu . "Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure". United States. doi:10.1134/S106377611613001X.
@article{osti_22617112,
title = {Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure},
author = {Belousov, Yu. M., E-mail: theorphys@phystech.edu},
abstractNote = {The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon. Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.},
doi = {10.1134/S106377611613001X},
journal = {Journal of Experimental and Theoretical Physics},
number = 6,
volume = 123,
place = {United States},
year = {Thu Dec 15 00:00:00 EST 2016},
month = {Thu Dec 15 00:00:00 EST 2016}
}
  • Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Namore » atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.« less
  • The synthesis and X-ray diffraction study of three heterometallic compounds of general formula (Ln{sub 2}[LnGe{sub 6}(μ-Oedph){sub 6}(μ-O){sub 3}(μ-OH){sub 3}(H{sub 2}O){sub 4}] · xH{sub 2}O){sub n} [Ln = Nd, x ∼ 26 (I); Er, x ∼ 24 (II); Tm, x ∼20 (III); H{sub 4}Oedph = 1-hydroxyethylidenediphosphonic acid] are performed. The basis element of structures I–III is a hexanuclear complex anion [Ge(μ-Oedph)(μ-O){sub 0.5}(μ-OH){sub 0.5}]{sub 6}{sup 9−}, in which bridging hydroxo and oxo ligands are statistically disordered with equally probability. Hexameric units are connected by Ln1(H{sub 2}O){sub 4} fragments into a framework whose channels are completely populated by disordered lanthanide atoms and watermore » molecules.« less
  • The NA60 experiment studied low-mass muon pair production in proton–nucleus (p–A) collisions using a 400 GeV proton beam at the CERN SPS. The low-mass dimuon spectrum is well described by the superposition of the two-body and Dalitz decays of the light neutral mesons η, ρ, ω, η' and φ, and no evidence of in-medium effects is found. A new high-precision measurement of the electromagnetic transition form factors of the η and ω was performed, profiting from a 10 times larger data sample than the peripheral In–In sample previously collected by NA60. Using the pole-parameterisation |F(M)| 2=(1 - M 22)more » -2 we find Λ -2 η = 1.934 ± 0.067 (stat.) ±0.050(syst.) (GeV/c 2) -2 and Λ -2 ω = 2.223 ± 0.026(stat.) ± 0.037(syst.) (GeV/c 2) -2. An improved value of the branching ratio of the Dalitz decay ω → μ +μ -π 0 is also obtained, with BR(ω → μ +μ -π 0) = [1.41 ± 0.09(stat.) ± 0.15(syst.)] ×10 -4. Finally, further results refer to the ρ line shape and a new limit on ρ/ω interference in hadron interactions.« less
  • Gas-phase ion-molecule association reactions of n-propyl sulfide radical cation ([n-Pr{sub 2}S]{sup +}) with n-propyl sulfide (n-Pr{sub 2}S) were studied by equilibrium methods in CO{sub 2} bath gas to investigate the bond energy of the 2c-3e bond. The 2c-3e S...S bond enthalpy in [n-Pr{sub 2}S...Sn-Pr{sub 2}]{sup +} was determined to be 119 kJ/mol at 507 K. This results in a scaled S...S bond energy of 123 kJ/mol. The S...S bond enthalpy in the i-propyl sulfide dimer cation ([i-Pr{sub 2}S...Si-Pr{sub 2}]{sup +}) could not be determined due to a fragmentation reaction, the loss of an i-propyl group. MS/MS metastable and collision-induced dissociationmore » experiments were carried out to determine metastable fragmentation pathways and to aid in structure analysis. The results are consistent with association products containing 2c-3e bonds; statistical unimolecular metastable fragmentation of the association adduct, [i-Pr{sub 2}S...Si-Pr{sub 2}]{sup +}, confirms the loss of the i-propyl group, which prevented the equilibrium experiments. 21 refs., 11 figs., 1 tab.« less
  • We reconstruct the rare decays B⁺→K⁺μ⁺μ⁻, B⁰→K*(892)⁰μ⁺μ⁻, and B s 0→Φ(1020)μ⁺μ⁻ in a data sample corresponding to 4.4 fb⁻¹ collected in pp¯ collisions at √s=1.96 TeV by the CDF II detector at the Tevatron Collider. Using 121±16 B⁺→K⁺μ⁺μ⁻ and 101±12 B⁰→K*⁰μ⁺μ⁻ decays we report the branching ratios. In addition, we report the differential branching ratio and the muon forward-backward asymmetry in the B⁺ and B⁰ decay modes, and the K*⁰ longitudinal polarization fraction in the B⁰ decay mode with respect to the squared dimuon mass. These are consistent with the predictions, and most recent determinations from other experiments and ofmore » comparable accuracy. We also report the first observation of the B s 0→Φμ⁺μ⁻ decay and measure its branching ratio BR(B s 0→Φμ⁺μ⁻)=[1.44±0.33±0.46]×10⁻⁶ using 27±6 signal events. This is currently the most rare B s 0 decay observed.« less