skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

Abstract

A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

Authors:
; ;  [1]
  1. Moscow State University, Faculty of Physics (Russian Federation)
Publication Date:
OSTI Identifier:
22614009
Resource Type:
Journal Article
Resource Relation:
Journal Name: Plasma Physics Reports; Journal Volume: 43; Journal Issue: 3; Other Information: Copyright (c) 2017 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; AIR FLOW; CURRENTS; ELECTRIC DISCHARGES; ELECTRON TEMPERATURE; PLASMA; PULSATIONS; SUPERSONIC FLOW

Citation Formats

Shibkov, V. M., E-mail: shibkov@phys.msu.ru, Shibkova, L. V., and Logunov, A. A. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow. United States: N. p., 2017. Web. doi:10.1134/S1063780X17030114.
Shibkov, V. M., E-mail: shibkov@phys.msu.ru, Shibkova, L. V., & Logunov, A. A. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow. United States. doi:10.1134/S1063780X17030114.
Shibkov, V. M., E-mail: shibkov@phys.msu.ru, Shibkova, L. V., and Logunov, A. A. Wed . "Parameters of the plasma of a dc pulsating discharge in a supersonic air flow". United States. doi:10.1134/S1063780X17030114.
@article{osti_22614009,
title = {Parameters of the plasma of a dc pulsating discharge in a supersonic air flow},
author = {Shibkov, V. M., E-mail: shibkov@phys.msu.ru and Shibkova, L. V. and Logunov, A. A.},
abstractNote = {A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.},
doi = {10.1134/S1063780X17030114},
journal = {Plasma Physics Reports},
number = 3,
volume = 43,
place = {United States},
year = {Wed Mar 15 00:00:00 EDT 2017},
month = {Wed Mar 15 00:00:00 EDT 2017}
}
  • The spectral characteristics of the thermal wake of a pulsating optical discharge (POD) in a supersonic air flow are studied. The POD is stimulated by radiation of a mechanically Q-switched, repetitively pulsed CO{sub 2} laser with a pulse repetition rate of 7 – 150 kHz and a power up to 4.5 kW. The flow is produced by means of the supersonic aerodynamic MAU-M setup having a conic nozzle with a critical cross-section size of 50 mm, the Mach number being 1.3 – 1.6. We describe in detail the system of optical diagnostics that allows the detection of the spectrum ofmore » the weak thermal wake glow against the background of high-power POD radiation. The glow of the thermal wake is due to the emission of light by atoms and ions of nitrogen and oxygen, carried by the flow in the form of hot low-density gas clouds (caverns). The wavelengths of the thermal wake emission and the data on the transitions, corresponding to the spectral lines are presented. (laser applications and other topics in quantum electronics)« less
  • Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less
  • We present the results of investigation of the parameters of an optical pulsed discharge (OPD) and their relation with gasdynamic parameters of a supersonic flow and with characteristics of laser radiation. For the first time the discrete objects are detected in the OPD by an optical method, namely, low-density caverns moving along with the flow. The propagation velocity of the thermal track arising in a supersonic flow under the action of the OPD is measured. It is found that at a pulse repetition rate of 90 – 120 kHz the caverns unite into a single plasma jet. (laser applications andmore » other topics in quantum electronics)« less
  • We report a study of the wave structure formed by an optical discharge plasma upon the absorption of repetitively pulsed CO{sub 2} laser radiation in a supersonic (M = 1.36) air flow. Experimental data are presented on the configuration of the head shock wave and the geometry and characteristic dimensions of breakdown regions behind a laser plasma pulsating in the flow at a frequency of up to 150 kHz. The data are compared to calculation in a point explosion model with allowance for counterpressure, which makes it possible to identify the relationship between laser radiation and supersonic flow parameters thatmore » ensures quasisteady- state energy delivery and is necessary for extending the possibilities of controlling the structure of supersonic flows. (interaction of laser radiation with matter)« less