skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

Abstract

Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as “nanomatryoshka” (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structuresmore » such as compositional heterodimers.« less

Authors:
; ;  [1]
  1. Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St., Miami, Florida 33174 (United States)
Publication Date:
OSTI Identifier:
22611528
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 6; Journal Issue: 6; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; BONDING; COUPLING; DIELECTRIC MATERIALS; DIMERS; ENERGY LEVELS; ENERGY-LEVEL TRANSITIONS; GOLD; LAYERS; PLASMONS; RESONANCE; SILVER; SPACE; SPECTRA; SYMMETRY

Citation Formats

Ahmadivand, Arash, E-mail: aahma011@fiu.edu, Sinha, Raju, and Pala, Nezih. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers. United States: N. p., 2016. Web. doi:10.1063/1.4953351.
Ahmadivand, Arash, E-mail: aahma011@fiu.edu, Sinha, Raju, & Pala, Nezih. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers. United States. doi:10.1063/1.4953351.
Ahmadivand, Arash, E-mail: aahma011@fiu.edu, Sinha, Raju, and Pala, Nezih. 2016. "Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers". United States. doi:10.1063/1.4953351.
@article{osti_22611528,
title = {Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers},
author = {Ahmadivand, Arash, E-mail: aahma011@fiu.edu and Sinha, Raju and Pala, Nezih},
abstractNote = {Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as “nanomatryoshka” (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.},
doi = {10.1063/1.4953351},
journal = {AIP Advances},
number = 6,
volume = 6,
place = {United States},
year = 2016,
month = 6
}
  • Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR) family. Many cell types express multiple EGFR family members (including EGFR, HER2, HER3 and/or HER4) that interact to form an array of homo- and hetero-dimers. Differential trafficking of these receptors should strongly affect signaling through this system by changing substrate access and heterodimerization efficiency. Because of the complexity of these dynamic processes we used a quantitative, computational model to understand this system. As a test case, parameters characterizing EGFR and HER2 interactions were derived using experimental data obtained from mammary epithelial cells constructed tomore » express different levels of HER2. With this data we were able to estimate receptor-specific internalization rate constants and dimer uncoupling rate constants. These parameters were not otherwise experimentally accessible due to the complex system interplay. Our models indicated that HER2:EGFR heterodimers traffic as single entities. Direct experiments using EGF and anti-HER2 and anti-EGFR antibodies using independently derived cell lines confirmed many of the predictions of the model. Furthermore, our model could predict the relationship between HER2 expression levels and the transient distribution of EGFR homodimers and heterodimers. Our results suggest that the levels of HER2 found on normal cells are barely at the threshold necessary to drive efficient heterodimerization. Thus, altering local HER2 concentrations in membrane microdomains could serve as an effective mechanism for regulating HER2 heterodimerization and could explain why HER2 overexpression found in some cancers have such a profound effect on cell physiology.« less
  • The plasmon coupling between metal nanostructures can lead to huge local electric field enhancement and new plasmon modes. Here, we study the effect of the close proximity of two gold nanorod particles on the modification of localized surface plasmon (LSP) modes of the individual on gold nanorod in spectral and spatial domain using cathodoluminescence (CL) spectroscopy and imaging in a high resolution scanning electron microscope (SEM). Significantly enhanced resonant emission is observed from the nanorod dimers when the electron beam is injected around the junction between the rods, where the local density of electromagnetic states is raised.
  • Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs canmore » be excited simply by contacting a silver nanowire with a SnO2 nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.« less