skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Minding the MeV gap: The indirect detection of low mass dark matter

Abstract

We consider the prospects for the indirect detection of low mass dark matter which couples dominantly to quarks. If the center of mass energy is below about 280 MeV, the kinematically allowed final states will be dominated by photons and neutral pions, producing striking signatures at gamma ray telescopes. In fact, an array of new instruments have been proposed, which would greatly improve sensitivity to photons in this energy range. We find that planned instruments can improve on current sensitivity to dark matter models of this type by up to a few orders of magnitude.

Authors:
;  [1]
  1. Department of Physics and Astronomy, University of Hawai’i, Honolulu, HI 96822 (United States)
Publication Date:
OSTI Identifier:
22609066
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1743; Journal Issue: 1; Conference: CETUP 2015: Workshop on dark matter, neutrino physics and astrophysics, Deadwood, SD (United States), 15 Jun - 17 Jul 2015, PPC 2015: 9. international conference on interconnections between particle physics and cosmology, Deadwood, SD (United States), 15 Jun - 17 Jul 2015; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; CENTER-OF-MASS SYSTEM; DETECTION; GAMMA RADIATION; MASS; MEV RANGE; NONLUMINOUS MATTER; PHOTONS; PIONS NEUTRAL; QUARKS; SENSITIVITY; TELESCOPES

Citation Formats

Boddy, Kimberly K., and Kumar, Jason, E-mail: jkumar@hawaii.edu. Minding the MeV gap: The indirect detection of low mass dark matter. United States: N. p., 2016. Web. doi:10.1063/1.4953276.
Boddy, Kimberly K., & Kumar, Jason, E-mail: jkumar@hawaii.edu. Minding the MeV gap: The indirect detection of low mass dark matter. United States. doi:10.1063/1.4953276.
Boddy, Kimberly K., and Kumar, Jason, E-mail: jkumar@hawaii.edu. 2016. "Minding the MeV gap: The indirect detection of low mass dark matter". United States. doi:10.1063/1.4953276.
@article{osti_22609066,
title = {Minding the MeV gap: The indirect detection of low mass dark matter},
author = {Boddy, Kimberly K. and Kumar, Jason, E-mail: jkumar@hawaii.edu},
abstractNote = {We consider the prospects for the indirect detection of low mass dark matter which couples dominantly to quarks. If the center of mass energy is below about 280 MeV, the kinematically allowed final states will be dominated by photons and neutral pions, producing striking signatures at gamma ray telescopes. In fact, an array of new instruments have been proposed, which would greatly improve sensitivity to photons in this energy range. We find that planned instruments can improve on current sensitivity to dark matter models of this type by up to a few orders of magnitude.},
doi = {10.1063/1.4953276},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1743,
place = {United States},
year = 2016,
month = 6
}
  • The halo dark matter (DM) can be captured by the Sun if its final velocity after the collision with a nucleus in the Sun is less than the escape velocity. We consider a selfinteracting dark matter (SIDM) model where U(1) gauge symmetry is introduced to account for the DM self-interaction. Such a model naturally leads to isospin violating DM-nucleon interaction, although isospin symmetric interaction is still allowed as a special case. We present the IceCube-PINGU 2σ sensitivity to the parameter range of the above model with 5 years of search for neutrino signature from DM annihilation in the Sun. Thismore » indirect detection complements the direct detection by probing those SIDM parameter ranges which are either the region for very small m{sub χ} or the region opened up due to isospin violations.« less
  • The halo dark matter (DM) can be captured by the Sun if its final velocity after the collision with a nucleus in the Sun is less than the escape velocity. We consider a selfinteracting dark matter (SIDM) model where U(1) gauge symmetry is introduced to account for the DM self-interaction. Such a model naturally leads to isospin violating DM-nucleon interaction, although isospin symmetric interaction is still allowed as a special case. We present the IceCube-PINGU 2σ sensitivity to the parameter range of the above model with 5 years of search for neutrino signature from DM annihilation in the Sun. Thismore » indirect detection complements the direct detection by probing those SIDM parameter ranges which are either the region for very small m{sub χ} or the region opened up due to isospin violations.« less
  • Cited by 1
  • Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometermore » on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥ 3σ. As a result, the halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.« less
    Cited by 1
  • We show, by using an extensive sample of viable supersymmetric models as templates, that indirect detection of dark matter through gamma rays may have a large potential for identifying the nature of dark matter. This is, in particular, true also for models that give too weak dark matter-nucleon scattering cross sections to be probed by present and planned direct detection experiments. Also models with a mass scale too high to be accessible at CERN's LHC accelerator may show up in next-generation imaging Cherenkov telescope arrays. Based on our findings, we therefore suggest to view indirect searches as genuine particle physicsmore » experiments, complementing other strategies to probe so far unknown regions in the parameter space of e.g. supersymmetric models, and propose a new approach that would make use of telescopes dedicated for dark matter searches. As a concrete example for the potential of such an approach, we consider an array of imaging air Cherenkov telescopes, the Dark Matter Array (DMA), and show that such an experiment could extend present-day limits by several orders of magnitude, reaching a large class of models that would remain undetected in both direct detection experiments and searches at the LHC. In addition, in a sizable part of the parameter space, signals from more than one type of dark matter detection experiment would be possible, something that may eventually be necessary in order to identify the dark matter candidate.« less