skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Onset of transition from laminar to chaos in MHD mixed convection of a lid-driven trapezoidal cavity filled with Cu-water nanofluid

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4958440· OSTI ID:22608567
;  [1]
  1. Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

The present study investigates the thermal mixing scenarios of steady magneto-hydrodynamic (MHD) mixed convection in a two-dimensional lid-driven trapezoidal cavity filled with Cu-water nanofluid. The top wall of the cavity slides with a uniform velocity from left to right direction, while the other walls are fixed. The bottom wall is kept with a constant higher temperature than the top one. The governing mass, momentum and energy equations are expressed in non-dimensional forms and Galerkin finite element method has been employed to solve these equations. Special attention is paid on investigating the onset of transition from laminar to chaos at pure mixed convection case. Hence, the computations are carried out for a wide range of Reynolds numbers (Re = 0.1 − 400) and Grashof numbers (Gr = 10{sup −2} − 1.6 × 10{sup 5}) at unity Richardson number and fixed Hartmann number (Ha = 10). The variation of average Nusselt number of the bottom heated wall indicates the influence of governing parameters (Re and Gr) on heat transfer characteristics. The results are presented and explained through the visualisation of isotherms, streamlines and heatlines.

OSTI ID:
22608567
Journal Information:
AIP Conference Proceedings, Vol. 1754, Issue 1; Conference: ICME 2015: 11. international conference on mechanical engineering, Dhaka (Bangladesh), 18-20 Dec 2015; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English