skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neutron diffraction study of quadruple perovskite SrCu{sub 3}Fe{sub 3}O{sub 12}

Abstract

The magnetic structure of the quadruple perovskite SrCu{sub 3}Fe{sub 4}O{sub 12} is studied by means of neutron powder diffraction. The magnetic diffraction peaks are observed at low temperatures below 200 K. The Rietveld refinement result suggests an antiferromagnetic alignment of Fe spin magnetic moments for SrCu{sub 3}Fe{sub 4}O{sub 12} at low temperature. The refined magnetic moment at 4 K is ∼3.5 µ{sub B}, which is larger than that of that of CeCu{sub 3}Fe{sub 4}O{sub 12} (2.3 µ{sub B}). The increase in the magnetic moment is attributed to the larger Fe{sup 3+}:Fe{sup 5+} ratio for SrCu{sub 3}Fe{sub 4}O{sub 12} (∼4:1) compared with that of CeCu{sub 3}Fe{sub 4}O{sub 12} (∼3:1).

Authors:
 [1]; ;  [2];  [3]
  1. Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan)
  2. Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)
  3. Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan)
Publication Date:
OSTI Identifier:
22608253
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1763; Journal Issue: 1; Conference: FMS2015: 2. international symposium on frontiers in materials science, Tokyo (Japan), 19-21 Nov 2015; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALIGNMENT; ANTIFERROMAGNETISM; COMPARATIVE EVALUATIONS; COPPER COMPOUNDS; FERRITES; IRON IONS; MAGNETIC MOMENTS; NEUTRON DIFFRACTION; NEUTRONS; PEROVSKITE; POWDERS; SPIN; STRONTIUM COMPOUNDS

Citation Formats

Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp, Murakami, Makoto, Mori, Shigeo, and Irifune, Tetsuo. Neutron diffraction study of quadruple perovskite SrCu{sub 3}Fe{sub 3}O{sub 12}. United States: N. p., 2016. Web. doi:10.1063/1.4961355.
Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp, Murakami, Makoto, Mori, Shigeo, & Irifune, Tetsuo. Neutron diffraction study of quadruple perovskite SrCu{sub 3}Fe{sub 3}O{sub 12}. United States. doi:10.1063/1.4961355.
Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp, Murakami, Makoto, Mori, Shigeo, and Irifune, Tetsuo. Fri . "Neutron diffraction study of quadruple perovskite SrCu{sub 3}Fe{sub 3}O{sub 12}". United States. doi:10.1063/1.4961355.
@article{osti_22608253,
title = {Neutron diffraction study of quadruple perovskite SrCu{sub 3}Fe{sub 3}O{sub 12}},
author = {Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp and Murakami, Makoto and Mori, Shigeo and Irifune, Tetsuo},
abstractNote = {The magnetic structure of the quadruple perovskite SrCu{sub 3}Fe{sub 4}O{sub 12} is studied by means of neutron powder diffraction. The magnetic diffraction peaks are observed at low temperatures below 200 K. The Rietveld refinement result suggests an antiferromagnetic alignment of Fe spin magnetic moments for SrCu{sub 3}Fe{sub 4}O{sub 12} at low temperature. The refined magnetic moment at 4 K is ∼3.5 µ{sub B}, which is larger than that of that of CeCu{sub 3}Fe{sub 4}O{sub 12} (2.3 µ{sub B}). The increase in the magnetic moment is attributed to the larger Fe{sup 3+}:Fe{sup 5+} ratio for SrCu{sub 3}Fe{sub 4}O{sub 12} (∼4:1) compared with that of CeCu{sub 3}Fe{sub 4}O{sub 12} (∼3:1).},
doi = {10.1063/1.4961355},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1763,
place = {United States},
year = {Fri Aug 26 00:00:00 EDT 2016},
month = {Fri Aug 26 00:00:00 EDT 2016}
}
  • Magnetic properties of the quadruple perovskite solid solutions Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} are investigated. Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} shows continuous increase in the ferromagnetic transition temperature as x increases. Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} exhibits a ferromagnetic-antiferromagnetic transition in the vicinity of y = 0.5. These observations demonstrate the electron doping effect on magnetic properties of charge-disproportionated ACu{sub 3}Fe{sub 4}O{sub 12} phases.
  • The authors have investigated the mechanism and determined the enthalpy of crystallization of x-ray amorphous iron garnets of rare-earth elements and their solid solutions. The authors have established a relation between the mechanism of the solid-phase reaction of formation of the iron garnets and the decrease in the ionic radius of the rare-earth element in the dodecahedral positions. A rise in the temperature during crystallization of amorphous phases facilitates a rapid completion of the reaction in which double oxides with a complex three-sublattice structure are released.
  • Structures and magnetic and electrical properties of quadruple perovskites containing rare earths Ba{sub 4}LnM{sub 3}O{sub 12} (Ln=rare earths; M=Ru, Ir) were investigated. They crystallize in the 12L-perovskite-type structure. Three MO{sub 6} octahedra are connected to each other by face-sharing and form a M{sub 3}O{sub 12} trimer. The M{sub 3}O{sub 12} trimers and LnO{sub 6} octahedra are alternately linked by corner-sharing, forming the perovskite-type structure with 12 layers. For Ln=Ce, Pr, and Tb, both the Ln and M ions are in the tetravalent state (Ba{sub 4}Ln{sup 4+}M{sup 4+}{sub 3}O{sub 12}), and for other Ln ions, Ln ions are in the trivalentmore » state and the mean oxidation state of M ions is +4.33 (Ba{sub 4}Ln{sup 3+}M{sup 4.33+}{sub 3}O{sub 12}). All the Ba{sub 4}Ln{sup 3+}Ru{sup 4.33+}{sub 3}O{sub 12} compounds show magnetic ordering at low temperatures, while any of the corresponding iridium-containing compounds Ba{sub 4}Ln{sup 3+}Ir{sup 4.33+}{sub 3}O{sub 12} is paramagnetic down to 1.8 K. Ba{sub 4}Ce{sup 4+}Ir{sup 4+}{sub 3}O{sub 12} orders antiferromagnetically at 10.5 K, while the corresponding ruthenium-containing compound Ba{sub 4}Ce{sup 4+}Ru{sup 4+}{sub 3}O{sub 12} is paramagnetic. These magnetic results were well understood by the magnetic behavior of M{sub 3}O{sub 12}. The effective magnetic moments and the entropy change for the magnetic ordering show that the trimers Ru{sup 4.33+}{sub 3}O{sub 12} and Ir{sup 4+}{sub 3}O{sub 12} have the S=1/2 ground state, and in other cases there is no magnetic contribution from the trimers Ru{sup 4+}{sub 3}O{sub 12} or Ir{sup 4.33+}{sub 3}O{sub 12}. Measurements of the electrical resistivity of Ba{sub 4}LnM{sub 3}O{sub 12} and its analysis show that these compounds demonstrate two-dimensional Mott-variable range hopping behavior. - Graphical abstract: Structures and magnetic and electrical properties of quadruple perovskites containing rare earths Ba{sub 4}LnM{sub 3}O{sub 12} (Ln=rare earths; M = Ru, Ir) were investigated. They crystallize in the 12L-perovskite-type structure. All the Ba{sub 4}Ln{sup 3+}Ru{sup 4.33+}{sub 3}O{sub 12} compounds show magnetic ordering at low temperatures, while any of the corresponding iridium-containing compounds Ba{sub 4}Ln{sup 3+}Ir{sup 4.33+}{sub 3}O{sub 12} is paramagnetic down to 1.8 K. Ba{sub 4}Ce{sup 4+}Ir{sup 4+}{sub 3}O{sub 12} orders antiferromagnetically at 10.5 K, while the corresponding ruthenium-containing compound Ba{sub 4}Ce{sup 4+}Ru{sup 4+}{sub 3}O{sub 12} is paramagnetic. These magnetic results were well understood by the magnetic behavior of M{sub 3}O{sub 12}. The electrical resistivity measurements show that these compounds demonstrate two-dimensional Mott-variable range hopping behavior.« less
  • PbMn{sub 3}Mn{sub 4}O{sub 12} a quadruple perovskite was prepared by high pressure and high temperature synthesis. Powder X-ray diffraction (PXD) and differential scanning calorimetry reveal a structural phase transition at {approx}380 K. Rietveld refinement of the synchrotron room temperature data indicate rhombohedral symmetry (R-3) with a=6.43675(4) A and {alpha}=109.556(2) Degree-Sign . Similar 423 K PXD data refined in a body centered cubic cell (Im-3) with a=7.4283(9) A. The temperature variation of magnetization, shows a magnetic field dependent antiferromagnetic-like transition at 68 K, and dynamic fluctuations indicative of magnetic frustration. The semiconducting electrical behavior indicates a large decrease in the conductivitymore » near 68 K. The temperature dependence of the real part of the dielectric constant, {epsilon}{sub real} increases dramatically at {approx}68 K, and shows relaxor-type ferroelectric behavior as a function of frequency. The intimate coupling of magnetic, electrical and dielectric properties at 68 K in PbMn{sub 3}Mn{sub 4}O{sub 12} suggests possible multiferroic behavior. - Graphical abstract: Resistance vs. temperature plot showing drastically increasing resistances at temperatures below 68 K (a). Formation of a frequency dependency of the dielectric constant between 68 K and ambient temperature (b). Sharp cusp in the magnetic susceptibility observed at 68 K which is suppressed with increasing magnetic field (c) indicates coupling of magnetic, electric and dielectric effects. Highlights: Black-Right-Pointing-Pointer PbMn{sub 3}Mn{sub 4}O{sub 12} a quadruple perovskite was prepared at high pressure. Black-Right-Pointing-Pointer A structural transition is seen at 380 K from space group R-3-to-Im-3. Black-Right-Pointing-Pointer An antiferromagnetic transition is observed at 68 K. Black-Right-Pointing-Pointer It is semiconducting with a large decrease in the conductivity near 68 K. Black-Right-Pointing-Pointer The temperature dependence of the dielectric constant increases dramatically at 68 K. Black-Right-Pointing-Pointer Coupling of magnetic, electric and dielectric behavior suggests multiferroicity.« less
  • The garnets Li{sub 3}Nd{sub 3}W{sub 2}O{sub 12} and Li{sub 5}La{sub 3}Sb{sub 2}O{sub 12} have been prepared by heating the component oxides and hydroxides in air at temperatures up to 950deg. C. Neutron powder diffraction has been used to examine the lithium distribution in these phases. Both compounds crystallise in the space group Ia3-bard with lattice parameters a=12.46869(9)A (Li{sub 3}Nd{sub 3}W{sub 2}O{sub 12}) and a=12.8518(3)A (Li{sub 5}La{sub 3}Sb{sub 2}O{sub 12}). Li{sub 3}Nd{sub 3}W{sub 2}O{sub 12} contains lithium on a filled, tetrahedrally coordinated 24d site that is occupied in the conventional garnet structure. Li{sub 5}La{sub 3}Sb{sub 2}O{sub 12} contains partial occupation ofmore » lithium over two crystallographic sites. The conventional tetrahedrally coordinated 24d site is 79.3(8)% occupied. The remaining lithium is found in oxide octahedra which are linked via a shared face to the tetrahedron. This lithium shows positional disorder and is split over two positions within the octahedron and occupies 43.6(4)% of the octahedra. Comparison of these compounds with related d{sup 0} and d{sup 10} phases shows that replacement of a d{sup 0} cation with d{sup 10} cation of the same charge leads to an increase in the lattice parameter due to polarisation effects.« less