skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

Abstract

Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the mostmore » significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were significantly higher in the white adipose tissue of lean pigs than their obese counterparts, in contrast to porcine CIDEa and CIDEc [3]. We therefore speculate that CIDEb may play a contrary role to the other CIDEs. The basic molecular information we provide here will be useful for further investigations of the physiological function of the gene, which will be helpful in better understanding the role of the CIDE family in lipid metabolism in pig models.« less

Authors:
 [1];  [2];  [3]
  1. Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014 (China)
  2. Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 404100 (China)
  3. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)
Publication Date:
OSTI Identifier:
22606223
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 478; Journal Issue: 1; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ADIPOSE TISSUE; AMINO ACID SEQUENCE; AMINO ACIDS; APOPTOSIS; CHROMOSOMES; CLONING; DROPLETS; GENES; LIPIDS; LIVER; LIVER CELLS; MESSENGER-RNA; MICE; NECROSIS; PHOSPHATES; POLYPEPTIDES; SMALL INTESTINE; SPLICING; SWINE

Citation Formats

Li, YanHua, E-mail: liyanhua.1982@aliyun.com, Li, AiHua, and Yang, Z.Q. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene. United States: N. p., 2016. Web. doi:10.1016/J.BBRC.2016.05.079.
Li, YanHua, E-mail: liyanhua.1982@aliyun.com, Li, AiHua, & Yang, Z.Q. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene. United States. doi:10.1016/J.BBRC.2016.05.079.
Li, YanHua, E-mail: liyanhua.1982@aliyun.com, Li, AiHua, and Yang, Z.Q. 2016. "Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene". United States. doi:10.1016/J.BBRC.2016.05.079.
@article{osti_22606223,
title = {Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene},
author = {Li, YanHua, E-mail: liyanhua.1982@aliyun.com and Li, AiHua and Yang, Z.Q.},
abstractNote = {Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were significantly higher in the white adipose tissue of lean pigs than their obese counterparts, in contrast to porcine CIDEa and CIDEc [3]. We therefore speculate that CIDEb may play a contrary role to the other CIDEs. The basic molecular information we provide here will be useful for further investigations of the physiological function of the gene, which will be helpful in better understanding the role of the CIDE family in lipid metabolism in pig models.},
doi = {10.1016/J.BBRC.2016.05.079},
journal = {Biochemical and Biophysical Research Communications},
number = 1,
volume = 478,
place = {United States},
year = 2016,
month = 9
}
  • A genomic clone encoding the Shaker-related potassium channel gene, Kcna4/mKv1.4, was isolated from mice. Its coding region is contained in a single exon, encodes a protein of 654 amino acids, and shares [approximately]91% nucleotide sequence identity with human KCNA4/hKv1.4. The authors show that 0.8 kb of the 5[prime] noncoding region (NCR), the entire protein coding region, and all of the known 3[prime]NCR are contained within a single exon; the remaining 0.5 kb of the 5[prime] NCR is separated from this exon by a 3.4-kb intron. The sequenced genomic region thus accounts for essentially all of the longest known transcript, althoughmore » the precise ends of this transcript have not been defined. The 3[prime] NCR contains several ATTTA and ATTTG motifs that are thought to destabilize mRNAs, and these are also present in rat, bovine, and human Kcna4/Kv1.4 cDNAs. It also contains three conserved polyadenylation signals, alternate utilization of which could generate mRNAs of differing stabilities. The 5[prime] NCR of Kcna4/mKv1.4 may also serve to regulate channel expression. This region is [approximately]85% identical to KCNA4/hKv1.4 and contains eight consensus translation start sites (G, A)[NNATG] that, based on the 5[prime]-3[prime] scanning model, would lead to a lowering of translational efficiency. The shortest Kcna4/Kv1.4 transcript can contain at most 400 bp of NCR and should lack the 3[prime] ATTTAs and most of the 5[prime] ATGs; this transcript might therefore exhibit increased stability and translational efficiency. Kcna4/mKv1.4 lies on mouse chromosome 2, near the Fshb locus, and in humans on the proximal half of chromosome 11p14 near human FSHB. Another K[sup +] channel gene. Kcnc1/mKv3.1, lies [approximately]1.8 cM from the Myod-1 gene on mouse chromosome 7, and in situ hybridization localizes KCNC1/hKv3.1 to the homologous region on human chromosome 11p14.3-p15.2. A third gene, KCNA1/hKv11, was mapped to human 12p13. 60 refs., 7 figs.« less
  • The nervous and immune systems share many functional and molecular similarities, including shared surface antigens, secretions of soluble factors, and cross-modulatory effects. We have identified previously a novel mRNA termed F5, which is expressed only in activated T lymphocytes and mature, postmitotic neurons. Tissue specificity and sequence conservation suggest an important function for F5 in T-lymphocyte proliferation and neuronal maturation. The F5 gene product is an evolutionarily conserved, cytoskeletal-associated phosphoprotein. A full-length mouse genomic clone has been isolated. The protein coding region of the F5 gene is approximately 16 kb in length and is composed of 13 coding exons. Themore » gene encoding F5, termed I2rf5, was mapped using interspecies mouse crosses in close proximity to a number of genes associated with neuronal defects on distal chromosome 4. 14 refs., 2 figs., 1 tab.« less
  • This article discusses the organization of the human interleukin-11 receptor {alpha} gene and its localization to human chromosome 9p13 using in situ hybridization. The genetic evolution of this hematopoietic family of cytokine receptors is theorized. 29 refs., 3 figs., 1 tab.
  • By catalyzing the rate-limiting step in adipose tissue lipolysis, hormone-sensitive lipase (HSL) is an important regulator of energy homeostasis. The role and importance of HSL in tissues other than adipose are poorly understood. We report here the cloning and expression of a testicular isoform, designated HSL{sub tes}. Due to an addition of amino acids at the NH{sub 2}-termini, rat and human HSL{sub tes} consist of 1068 and 1076 amino acids, respectively, compared to the 768 and 775 amino acids, respectively, of the adipocyte isoform (HSL{sub adi}). A novel exon of 1.2 kb, encoding the human testis-specific amino acids, was isolatedmore » and mapped to the HSL gene, 16 kb upstream of the exons encoding HSL{sub adi}. The transcribed mRNA of 3.9 kb was specifically expressed in testis. No significant similarity with other known proteins was found for the testis-specific sequence. The amino acid composition differs from the HSL{sub adi} sequence, with a notable hydrophilic character and a high content of prolines and glutamines. COS cells, transfected by the 3.9-kb human testis cDNA, expressed a protein of the expected molecular mass (M{sub r} {approximately}120,000) that exhibited catalytic activity similar to that of HSL{sub adi}. Immunocytochemistry localized HSL to elongating spermatids and spermatozoa; HSL was not detected in interstitial cells. 34 refs., 5 figs.« less
  • The mammalian insulin-like growth factor III/cation-independent mannose 6-phosphate receptor (IGF-II/MPR) is a multifunctional protein that binds both IGF-II and ligands containing a mannose 6-phosphate recognition marker through distinct high-affinity sites. This receptor plays an integral part in lysosomal enzyme transport, has a potential role in growth factor maturation and clearance, and may mediate IGF-II-activated signal transduction through a G-protein-coupled mechanism. Recent studies have shown that production of IGF-II/MPR mRNA and protein begins in the mouse embryo soon after fertilization and have demonstrated that the receptor gene is on mouse chromosome 17 and is maternally imprinted. In this paper, the authorsmore » report the cloning and characterization of the mouse IGF-II/MPR gene. The gene is 93 kb long, is composed of 48 exons, and codes for a predicted protein of 2482 amino acids. The extracellular part of the receptor is encoded by exons 1-46, with each of 15 related repeating motifs being determined by parts of 3-5 exons. A single fibronectin type II-like element is found in exon 39. The transmembrane portion of the receptor also is encoded by exon 46, and the cytoplasmic region by exons 46-48. The positions of exon-intron splice junctions are conserved between several of the repeats in the IGF-II/MPR and the homologous extracellular region of the gene for the other known lysosomal sorting receptor, the cation-dependent mannose 6-phosphate receptor. The gene duplications that gave rise to the modern IGF-II/MPR probably occurred before the divergence of mammals, since there is more extensive protein sequence conservation between receptors from different species than between any pair of repeating motifs within a single receptor. 55 refs., 7 figs., 1 tab.« less