skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes

Abstract

Biochanin-A, a phytoestrogen derived from herbal plants, protected from the IL-1β-induced loss of proteoglycans through the suppression of matrix degrading enzymes such as matrix metalloproteinase (MMP)-13, MMP-3, MMP-1, and ADAMTS-5 in primary rat chondrocytes and the knee articular cartilage. It also suppressed the expression of IL-1β-induced catabolic factors such as nitric oxide synthase 2, cyclooxygenase-2, prostaglandin E{sub 2}, and inflammatory cytokines. Furthermore, biochanin-A suppressed the IL-1β-induced phosphorylation of NFκB, and inhibited its nuclear translocation in primary rat chondrocytes. These results indicate that biochanin-A antagonizes the IL-1β-induced catabolic effects through its anti-inflammatory activity that involves the modulation of NFκB signaling. - Highlights: • Biochanin-A is a phytoestrogen derived from medicinal plants. • It suppressed the IL-1β-induced matrix degrading enzymes and catabolic factors. • It inhibited IL-1β-induced proteoglycan loss in chondrocytes and cartilage tissues. • Its anti-catabolic effects were mediated by modulation of NFκB signaling. • It may be used as a potential anti-catabolic biomaterial for osteoarthritis.

Authors:
 [1]; ;  [2];  [1];  [3];  [4];  [5]; ;  [6];  [1];  [7];  [8];  [6]
  1. Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of)
  2. Department of Dental Bioengineering, Chosun University, Gwangju, 61452 (Korea, Republic of)
  3. Department of Periodontology, Chosun University, Gwangju, 61452 (Korea, Republic of)
  4. Department of Prosthodontics, Chosun University, Gwangju, 61452 (Korea, Republic of)
  5. Department of Oral and Maxillofacial Radiology, Chosun University, Gwangju, 61452 (Korea, Republic of)
  6. Pre-Dentistry, School of Dentistry, Chosun University, Gwangju, 61452 (Korea, Republic of)
  7. Korea Basic Science Institute, Gwangju Center, Chonnam National University, Gwangju, 61186 (Korea, Republic of)
  8. Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612 (United States)
Publication Date:
OSTI Identifier:
22606186
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 477; Journal Issue: 4; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BIOLOGICAL MATERIALS; BONE JOINTS; CARTILAGE; ENZYMES; INFLAMMATION; INHIBITION; LYMPHOKINES; MEDICINAL PLANTS; MODULATION; NITRIC OXIDE; PHOSPHORYLATION; PROSTAGLANDINS; RATS; TRANSLOCATION

Citation Formats

Oh, Ji-Su, Cho, In-A, Kang, Kyeong-Rok, You, Jae-Seek, Yu, Sang-Joun, Lee, Gyeong-Je, Seo, Yo-Seob, Kim, Chun Sung, Kim, Do Kyung, Kim, Su-Gwan, Seo, Young-Woo, Im, Hee-Jeong, and Kim, Jae-Sung, E-mail: js_kim@chosun.ac.kr. Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes. United States: N. p., 2016. Web. doi:10.1016/J.BBRC.2016.06.126.
Oh, Ji-Su, Cho, In-A, Kang, Kyeong-Rok, You, Jae-Seek, Yu, Sang-Joun, Lee, Gyeong-Je, Seo, Yo-Seob, Kim, Chun Sung, Kim, Do Kyung, Kim, Su-Gwan, Seo, Young-Woo, Im, Hee-Jeong, & Kim, Jae-Sung, E-mail: js_kim@chosun.ac.kr. Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes. United States. doi:10.1016/J.BBRC.2016.06.126.
Oh, Ji-Su, Cho, In-A, Kang, Kyeong-Rok, You, Jae-Seek, Yu, Sang-Joun, Lee, Gyeong-Je, Seo, Yo-Seob, Kim, Chun Sung, Kim, Do Kyung, Kim, Su-Gwan, Seo, Young-Woo, Im, Hee-Jeong, and Kim, Jae-Sung, E-mail: js_kim@chosun.ac.kr. 2016. "Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes". United States. doi:10.1016/J.BBRC.2016.06.126.
@article{osti_22606186,
title = {Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes},
author = {Oh, Ji-Su and Cho, In-A and Kang, Kyeong-Rok and You, Jae-Seek and Yu, Sang-Joun and Lee, Gyeong-Je and Seo, Yo-Seob and Kim, Chun Sung and Kim, Do Kyung and Kim, Su-Gwan and Seo, Young-Woo and Im, Hee-Jeong and Kim, Jae-Sung, E-mail: js_kim@chosun.ac.kr},
abstractNote = {Biochanin-A, a phytoestrogen derived from herbal plants, protected from the IL-1β-induced loss of proteoglycans through the suppression of matrix degrading enzymes such as matrix metalloproteinase (MMP)-13, MMP-3, MMP-1, and ADAMTS-5 in primary rat chondrocytes and the knee articular cartilage. It also suppressed the expression of IL-1β-induced catabolic factors such as nitric oxide synthase 2, cyclooxygenase-2, prostaglandin E{sub 2}, and inflammatory cytokines. Furthermore, biochanin-A suppressed the IL-1β-induced phosphorylation of NFκB, and inhibited its nuclear translocation in primary rat chondrocytes. These results indicate that biochanin-A antagonizes the IL-1β-induced catabolic effects through its anti-inflammatory activity that involves the modulation of NFκB signaling. - Highlights: • Biochanin-A is a phytoestrogen derived from medicinal plants. • It suppressed the IL-1β-induced matrix degrading enzymes and catabolic factors. • It inhibited IL-1β-induced proteoglycan loss in chondrocytes and cartilage tissues. • Its anti-catabolic effects were mediated by modulation of NFκB signaling. • It may be used as a potential anti-catabolic biomaterial for osteoarthritis.},
doi = {10.1016/J.BBRC.2016.06.126},
journal = {Biochemical and Biophysical Research Communications},
number = 4,
volume = 477,
place = {United States},
year = 2016,
month = 9
}
  • Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotinemore » exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.« less
  • Natural compounds containing vanilloid and Michael acceptor moieties appear to possess anti-cancer and chemopreventive properties. The ginger constituent shogaol represents one such compound. In this study, the anti-cancer potential of a synthetic novel shogaol analog 3-phenyl-3-shogaol (3-Ph-3-SG) was assessed by evaluating its effects on signaling pathways. At non-toxic concentrations, 3-Ph-3-SG suppressed cancer cell invasion in MDA-MB-231 and MCF-7 breast carcinoma cells through inhibition of PMA-activated MMP-9 expression. At similar concentrations, 3-Ph-3-SG reduced expression of the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanglandin-E{sub 2} (PGE{sub 2}) in RAW 264.7 macrophage-like cells. Inhibition of cancermore » cell invasion and inflammation by 3-Ph-3-SG were mediated through suppression of the nuclear factor-kappaB (NF-κB) signaling pathway. The 3-Ph-3-SG also demonstrated cytoprotective effects by inducing the antioxidant response element (ARE)-driven genes NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1). Cytoprotection by 3-Ph-3-SG was achieved at least partly through modification of cysteine residues in the E3 ubiquitin ligase substrate adaptor Kelch-like ECH-associated protein 1 (Keap1), which resulted in accumulation of transcription factor NF-E2 p45-related factor 2 (Nrf2). The activities of 3-Ph-3-SG were comparable to those of 6-shogaol, the most abundant naturally-occurring shogaol, and stronger than those of 4-hydroxyl-null deshydroxy-3-phenyl-3-shogaol, which attested the importance of the 4-hydroxy substituent in the vanilloid moiety for bioactivity. In summary, 3-Ph-3-SG is shown to possess activities that modulate stress-associated pathways relevant to multiple steps in carcinogenesis. Therefore, it warrants further investigation of this compound as a promising candidate for use in chemotherapeutic and chemopreventive strategies. - Highlights: • Novel shogaol 3-phenyl-3-shogaol suppressed cancer cell invasion and inflammation. • Anti-invasive and anti-inflammatory effects were NF-κB-dependent. • 3-Phenyl-3-shogaol induced ARE-driven genes to achieve cytoprotection. • Cytoprotective effects were brought about by modification of cysteines in Keap1. • Chemopreventive activities of 3-phenyl-3-shogaol and 6-shogaol were comparable.« less
  • Purpose: To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. Methods and Materials: Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. Results: Four grays of radiation induced the highest level of IL-6 protein. The promoter assaymore » and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. Conclusion: Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.« less
  • Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasiamore » and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion. • Blackberry extract inhibits UVB-induced lipid peroxidation. • Blackberry extract inhibits UVB-induced myeloperoxidase activity. • Blackberry extract diminishes UVB-induced inflammatory responses. • Blackberry extract prevents skin from oxidative damage and inflammation by UVB.« less
  • Under conditions of oxidative stress, the 20S proteasome plays a critical role in maintaining cellular homeostasis through the selective degradation of oxidized and damaged proteins. This adaptive stress response is distinct from ubiquitin-dependent pathways in that oxidized proteins are recognized and degraded in an ATP-independent mechanism, which can involve the molecular chaperone Hsp90. Like the regulatory complexes 19S and 11S REG, Hsp90 tightly associates with the 20S proteasome to mediate the recognition of aberrant proteins for degradation. In the case of the calcium signaling protein calmodulin, proteasomal degradation results from the oxidation of a single surface exposed methionine (i.e., Met145);more » oxidation of the other eight methionines has a minimal effect on the recognition and degradation of calmodulin by the proteasome. Since cellular concentrations of calmodulin are limiting, the targeted degradation of this critical signaling protein under conditions of oxidative stress will result in the downregulation of cellular metabolism, serving as a feedback regulation to diminish the generation of reactive oxygen species. The targeted degradation of critical signaling proteins, such as calmodulin, can function as sensors of oxidative stress to downregulate global rates of metabolism and enhance cellular survival.« less