skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In vivo inhibition of tumor progression by 5 hydroxy-1,4-naphthoquinone (juglone) and 2-(4-hydroxyanilino)-1,4-naphthoquinone (Q7) in combination with ascorbate

Abstract

The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16 and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with {sup 14}C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined withmore » ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism. - Highlights: • Ascorbate potentiates the inhibition caused by juglone and Q7on tumor progress in vivo. • Juglone and Q7 with ascorbate caused widespread oxidative stress in tumor tissue. • Treatments inhibited HIF-1 and GLUT1 expression causing reduced glucose uptake. • Treatments induced cell cycle arrest and apoptosis in tumor in vivo.« less

Authors:
 [1];  [2]; ; ; ;  [1]; ; ;  [3];  [4];  [1]
  1. Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC (Brazil)
  2. Postgraduate Programe of Health Science, Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC (Brazil)
  3. Department of Chemical and Pharmaceutical Sciences, Universidad Arturo Prat, Iquique (Chile)
  4. Toxicology and Cancer Biology Research Group (GTOX), Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium)
Publication Date:
OSTI Identifier:
22606181
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 477; Journal Issue: 4; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACRIDINE ORANGE; ADP; ANIMAL TISSUES; ANTIOXIDANTS; APOPTOSIS; ASCITES; BORON CHLORIDES; BROMIDES; CARBON 14; CARBONYLATION; CATALASE; CELL CULTURES; CELL CYCLE; EHRLICH ASCITES TUMOR; GLUCOSE; GLUTATHIONE; IN VIVO; INHIBITION; LIQUIDS; MICE; OXIDATION; SUPEROXIDE DISMUTASE; TUMOR CELLS; UPTAKE

Citation Formats

Ourique, Fabiana, Kviecinski, Maicon R., Zirbel, Guilherme, Castro, Luiza S.E.P.W., Gomes Castro, Allisson Jhonatan, Mena Barreto Silva, Fátima Regina, Valderrama, Jaime A., Rios, David, Benites, Julio, Calderon, Pedro Buc, and Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com. In vivo inhibition of tumor progression by 5 hydroxy-1,4-naphthoquinone (juglone) and 2-(4-hydroxyanilino)-1,4-naphthoquinone (Q7) in combination with ascorbate. United States: N. p., 2016. Web. doi:10.1016/J.BBRC.2016.06.113.
Ourique, Fabiana, Kviecinski, Maicon R., Zirbel, Guilherme, Castro, Luiza S.E.P.W., Gomes Castro, Allisson Jhonatan, Mena Barreto Silva, Fátima Regina, Valderrama, Jaime A., Rios, David, Benites, Julio, Calderon, Pedro Buc, & Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com. In vivo inhibition of tumor progression by 5 hydroxy-1,4-naphthoquinone (juglone) and 2-(4-hydroxyanilino)-1,4-naphthoquinone (Q7) in combination with ascorbate. United States. doi:10.1016/J.BBRC.2016.06.113.
Ourique, Fabiana, Kviecinski, Maicon R., Zirbel, Guilherme, Castro, Luiza S.E.P.W., Gomes Castro, Allisson Jhonatan, Mena Barreto Silva, Fátima Regina, Valderrama, Jaime A., Rios, David, Benites, Julio, Calderon, Pedro Buc, and Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com. 2016. "In vivo inhibition of tumor progression by 5 hydroxy-1,4-naphthoquinone (juglone) and 2-(4-hydroxyanilino)-1,4-naphthoquinone (Q7) in combination with ascorbate". United States. doi:10.1016/J.BBRC.2016.06.113.
@article{osti_22606181,
title = {In vivo inhibition of tumor progression by 5 hydroxy-1,4-naphthoquinone (juglone) and 2-(4-hydroxyanilino)-1,4-naphthoquinone (Q7) in combination with ascorbate},
author = {Ourique, Fabiana and Kviecinski, Maicon R. and Zirbel, Guilherme and Castro, Luiza S.E.P.W. and Gomes Castro, Allisson Jhonatan and Mena Barreto Silva, Fátima Regina and Valderrama, Jaime A. and Rios, David and Benites, Julio and Calderon, Pedro Buc and Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com},
abstractNote = {The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16 and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with {sup 14}C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism. - Highlights: • Ascorbate potentiates the inhibition caused by juglone and Q7on tumor progress in vivo. • Juglone and Q7 with ascorbate caused widespread oxidative stress in tumor tissue. • Treatments inhibited HIF-1 and GLUT1 expression causing reduced glucose uptake. • Treatments induced cell cycle arrest and apoptosis in tumor in vivo.},
doi = {10.1016/J.BBRC.2016.06.113},
journal = {Biochemical and Biophysical Research Communications},
number = 4,
volume = 477,
place = {United States},
year = 2016,
month = 9
}
  • Highlights: Black-Right-Pointing-Pointer The cytotoxicity of juglone is markedly increased by ascorbate. Black-Right-Pointing-Pointer T24 cell death by oxidative stress is necrosis-like. Black-Right-Pointing-Pointer Redox cycling by juglone/ascorbate inhibits cell proliferation. Black-Right-Pointing-Pointer Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC{sub 50} value for juglone at 24 h decreased from 28.5 {mu}M to 6.3 {mu}M in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress inmore » juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 {mu}M), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.« less
  • N{sup 4}-Hydroxy-dCMP (N{sup 4}-OH-dCMP), N{sup 4}-methoxy-dCMP (N{sup 4}-OMe-dCMP), and their 5-fluoro congeners were all slow-binding inhibitors of Ehrlich carcinoma thymidylate synthase (TS), competitive with respect to dUMP, and had differing kinetic constants describing interactions with the two TS binding sites. N{sup 4}-OH-dCMP was not a substrate and its inactivation of TS was methylenetetrahydrofolate-dependent, hence mechanism-based. K{sub i} values for N{sup 4}-OH-dCMP and its 5-fluoro analogue were in the range 10{sup {minus}7}-10{sup {minus}8} M, 2-3 orders of magnitude higher for the corresponding N{sup 4}-OMe analogues. The 5-methyl analogue of N{sup 4}-OHdCMP was 10{sup 4}-fold less potent, pointing to the anti rotamermore » of the imino form of exocyclic N{sup 4}-OH, relative to the ring N(3), as the active species. This is consistent with weaker slow-binding inhibition of the altered enzyme from 5-FdUrd-resistant, relative to parent, L1210 cells by both FdUMP and N{sup 4}-OH-dCMP, suggesting interaction of both N{sup 4}-OH and C(5)-F groups with the same region of the active center. Kinetic studies with purified enzyme from five sources, viz., Ehrlich carcinoma, L1210 parental, and 5-FdUrd-resistant cells, regenerating rat liver, and the tapeworm Hymenolepis diminuta, demonstrated that addition of a 5-fluoro substituent to N{sup 4}-OH-dCMP increased its affinity from 2- to 20-fold for the enzyme from different sources. With the Ehrlich and tapeworm enzymes, N{sup 4}-OH-FdCMP and FdUMP were almost equally effective inhibitors.« less
  • Chromosomal translocations affecting mixed lineage leukemia gene ( MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. In this paper, we report the development of highly potent and orally bioavailable small-molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, and show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate the efficacy of these compounds in primary samples derived from MLL leukemia patients. In conclusion, overall, we demonstrate that pharmacologic inhibitionmore » of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification.« less
    Cited by 42
  • Chromosomal translocations affecting mixed lineage leukemia gene ( MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. In this paper, we report the development of highly potent and orally bioavailable small-molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, and show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate the efficacy of these compounds in primary samples derived from MLL leukemia patients. In conclusion, overall, we demonstrate that pharmacologic inhibitionmore » of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification.« less
  • Colorectal cancer has been associated with the activation of ras oncogenes and with the deletion of multiple chromosomal regions including chromosomes 5q, 17p, and 18q. The candidate tumor suppressor genes from these regions are, respectively, MCC and/or APC, p53, and DCC. In order to further understanding of the molecular and genetic mechanisms involved in tumor progression and, thereby, of normal cell growth, it is important to determine whether defects in one or more of these loci contribute functionally in the progression to malignancy in colorectal cancer and whether correction of any of these defects restores normal growth control in vitromore » and in vivo. To address this question, the authors have utilized the technique of microcell-mediated chromosome transfer to introduce normal human chromosomes 5, 17, and 18 individually into recipient colorectal cancer cells. Additionally, chromosome 15 was introduced into SW480 cells as an irrelevant control chromosome. While the introduction of chromosome 17 into the tumorigenic colorectal cell line SW480 yielded no viable clones, cell lines were established after the introduction of chromosomes 15, 5, and 18. SW480-chromosome 5 hybrids are strongly suppressed for tumorigenicity, while SW480-chromosome 18 hybrids produce slowly growing tumors in some of the animals injected. Hybrids containing the introduced chromosome 5 express the APC gene present on that chromosome as well as the endogenous mutant transcript. Expression of the putative tumor suppressor gene, DCC, was seen in the clones containing the introduced chromosome 18 but was significantly reduced in several of the tumor reconstitute cell lines. Our findings indicate that while multiple defects in tumor suppressor genes seem to be required for progression to the malignant state in colorectal cancer, correction of only a single defect can have significant effects in vivo and/or in vitro.« less