skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Arsenic and 17-β-estradiol bind to each other and neutralize each other’s signaling effects

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [2];  [1]
  1. Center for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306 (India)
  2. Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207 (India)

We report that arsenic trioxide (ATO) and 17-beta-estradiol (E2) abolish each other’s independent cell signaling effects in respect of cell survival and proliferation/migration of breast cancer (MCF-7) cells. The possibility that this is due to binding of ATO to E2 was confirmed through difference absorption spectroscopy, chromatography-coupled voltammometry and 1-D {sup 1}H and {sup 13}C NMR spectroscopy. Binding leads to attenuation of E2’s hydroxyl {sup 1}H peaks at its C17 and C3 carbon positions. The results suggest that ATO and E2 can titrate each other’s levels, potentially explaining why sustained arsenic exposure tends to be associated with delays in age of menarche, advanced age of menopause, poorer sperm quality, higher overall morbidity in men, and lower incidences of breast cancer in women in some arsenic-contaminated areas. - Highlights: • Difference absorption spectroscopy suggests that arsenic binds to estradiol. • Interaction with arsenic alters {sup 1}H and {sup 13}C NMR spectra of estradiol at positions C3 and C17. • Estradiol traps arsenic on C{sub 18} reverse-phase columns. • Estradiol and arsenic neutralize each other’s ability to stimulate scratch wound healing. • Arsenic appears to form pnictogen bonds with hydroxyls on estradiol.

OSTI ID:
22606176
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 477, Issue 4; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English