skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice

Abstract

Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation of Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. - Highlights: • atRA exposure on E12.0 induced MEE persistence and cleft palate. • Notch1 was up-regulated in MEE cells inmore » the atRA-treated embryos. • atRA inhibits MEE degradation, which in turn induces cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway.« less

Authors:
; ; ;  [1];  [2];  [3];  [4];  [1];  [2];  [1];  [2]
  1. Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China)
  2. (China)
  3. Department of Oral and Maxillofacial Surgery, Kiang Wu Hospital, Macao (China)
  4. Department of Stomatology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen (China)
Publication Date:
OSTI Identifier:
22606163
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 477; Journal Issue: 3; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; APOPTOSIS; CELL PROLIFERATION; EMBRYOS; EPITHELIUM; FAILURES; INHIBITION; MICE; MONOCLINIC LATTICES; RETINOIC ACID; TISSUE CULTURES

Citation Formats

Zhang, Yadong, Dong, Shiyi, Wang, Weicai, Wang, Jianning, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, Wang, Miao, Chen, Mu, Hou, Jinsong, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, Huang, Hongzhang, E-mail: drhuang52@163.com, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice. United States: N. p., 2016. Web. doi:10.1016/J.BBRC.2016.06.107.
Zhang, Yadong, Dong, Shiyi, Wang, Weicai, Wang, Jianning, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, Wang, Miao, Chen, Mu, Hou, Jinsong, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, Huang, Hongzhang, E-mail: drhuang52@163.com, & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice. United States. doi:10.1016/J.BBRC.2016.06.107.
Zhang, Yadong, Dong, Shiyi, Wang, Weicai, Wang, Jianning, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, Wang, Miao, Chen, Mu, Hou, Jinsong, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, Huang, Hongzhang, E-mail: drhuang52@163.com, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055. 2016. "Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice". United States. doi:10.1016/J.BBRC.2016.06.107.
@article{osti_22606163,
title = {Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice},
author = {Zhang, Yadong and Dong, Shiyi and Wang, Weicai and Wang, Jianning and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 and Wang, Miao and Chen, Mu and Hou, Jinsong and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 and Huang, Hongzhang, E-mail: drhuang52@163.com and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055},
abstractNote = {Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation of Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. - Highlights: • atRA exposure on E12.0 induced MEE persistence and cleft palate. • Notch1 was up-regulated in MEE cells in the atRA-treated embryos. • atRA inhibits MEE degradation, which in turn induces cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway.},
doi = {10.1016/J.BBRC.2016.06.107},
journal = {Biochemical and Biophysical Research Communications},
number = 3,
volume = 477,
place = {United States},
year = 2016,
month = 8
}
  • Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior tomore » palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G{sub 1}/S progression of palatal mesenchymal cells through upregulation of p21 {sup Cip1}, leading to Rb hypophospholylation. Thus, RA appears to cause G{sub 1} arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA.« less
  • Chenevix-Trench et al. (1992) reported a significant difference between nonsyndromic cleft lip with or without cleft palate (CL [+-] P) cases and unrelated controls in the frequency of alleles at the retinoic acid receptor alpha (RARA) PstI RFLP located at 17q21.1. They also observed borderline significant (P = .055) differences between allele frequencies in subjects with cleft lip and palate (CL + P) compared with those with cleft lip only (CL). Retinoic acid (RA) is a known teratogen capable of producing cleft palate in rodents (Abbott and Birnbaum 1990). Chenevix-Tench et al. (1992) hypothesized that variation in susceptibility to themore » effects of RA in humans may result from alterations at the RARA locus. We have investigated association and linkage between CL [+-] P and a microsatellite marker (D17S579) located at 17q21 (Hall et al. 1992), selected for its proximity to RARA, in 14 extended multiplex families from rural West Bengal, India.« less
  • The first association study of cleft lip with or without cleft palate (CL/P), with candidate genes, found an association with the transforming growth-factor alpha (TGFA) locus. This finding has since been replicated, in whole or in part, in three independent studies. Here the authors extend their original analysis of the TGFA TaqI RFLP to two other TGFA RFLPs and seven other RFLPs at five candidate genes in 117 nonsyndromic cases of CL/P and 113 controls. The other candidate genes were the retinoic acid receptor (RARA), the bcl-2 oncogene, and the homeobox genes 2F, 2G, and EN2. Significant associations with themore » TGFA TaqI and BamHI RFLPs were confirmed, although associations of clefting with previously reported haplotypes did not reach significance. Of particular interest, in view of the known teratogenic role of retinoic acid, was a significant association with the RARA PstI RFLP (P = .016; not corrected for multiple testing). The effect on risk of the A2 allele appears to be additive, and although the A2A2 homozygote only has an odds ratio of about 2 and recurrence risk to first-degree relatives ([lambda][sub 1]) of 1.06, because it is so common it may account for as much as a third of the attributable risk of clefting. There is no evidence of interaction between the TGFA and RARA polymorphisms on risk, and jointly they appear to account for almost half the attributable risk of clefting. 43 refs., 1 fig., 4 tabs.« less
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and retinoic acid (RA) are both teratogenic in mice. TCDD is a highly toxic, stable environmental contaminant, while RA is a naturally occurring form of vitamin A. Exposure to TCDD induces hydronephrosis and cleft palate, and exposure to RA induces limb defects and cleft palate. Teratology studies previously have shown that the incidence of clefting is higher after exposure to RA + TCDD than would be observed for the same doses of either compound given alone. This study examines the cellular effects which result in cleft palate, after po administration on gestation Day (GD) 10 or 12 ofmore » RA + TCDD in corn oil (10 ml/kg total volume). Exposure on GD 10 to 6 micrograms TCDD + 40 mg RA/kg inhibited early growth of the shelves and clefting was due to a failure of shelves to meet and fuse. This effect on mesenchyme was observed in previous studies to occur after exposure on GD 10 to 40 mg/kg RA alone, but not after TCDD alone. After exposure on GD 12 to 6 micrograms TCDD + 80 mg RA/kg, clefting was due to a failure of shelves to fuse after making contact, because the medial cells differentiated into an oral-like epithelium. This response was observed in previous studies to occur after exposure to TCDD alone, but RA alone on GD 12 resulted in differentiation toward nasal-like cells. The interaction between TCDD and RA results in RA-like clefting after exposure on GD 10 and TCDD-like clefting after exposure on GD 12, and this clefting occurs at higher incidences than would occur after the same levels of either agent alone. After exposure on either GD 10 or 12 to RA + TCDD, the programmed cell death of the medial cells does not occur, and these cells continue to express EGF receptors and to bind 125I-EGF. The effects of RA and TCDD may involve modulation of the cells responses to embryonic growth and differentiation factors.« less
  • Genetic and molecular analyses of a number of radiation-induced deletion mutations of the pink-eyed dilution (p) locus in mouse chromosome 7 have identified a specific interval on the genetic map associated with a neonatally lethal mutation that results in cleft palate. This interval, closely linked and distal to p, and bracketed by the genes encoding the [alpha][sub 5] and [beta][sub 3] subunits of the type A [gamma]-aminobutyric acid receptor (Gabra5 and Gabrb3, respectively), contains a gene(s) (cp1; cleft palate 1) necessary for normal palate development. The cp1 interval extends from the distal breakpoint of the prenatally lethal p[sup 83FBFo] deletionmore » to the Gabrb3 locus. Among 20 p deletions tested, there was complete concordance between alterations at the Gabrb3 transcription unit and inability to complement the cleft-palate defect. These mapping data, along with previously described in vivo and in vitro teratological effects of [gamma]-aminobutyric acid or its agonists on palate development, suggest the possibility that a particular type A [gamma]-aminobutyric acid receptor that includes the [beta][sub 3] subunit may be necessary for normal palate development. The placement of the cp1 gene within a defined segment of the larger D15S12h (p)-D15S9h-1 interval in the mouse suggests that the highly homologous region of the human genome, 15q11-q13, be evaluated for a role(s) in human fetal facial development. 29 refs., 4 figs., 1 tab.« less