skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Store-operated Ca{sup 2+} entry in rhabdomyosarcoma cells

Abstract

Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, has an intrinsic or early-acquisition of resistance to chemo- and radiation therapy. Molecular determinants pivotal for RMS migration, metastatic invasion, cell proliferation, and survival are incompletely identified. Migration and cell proliferation were shown to correlate with cytosolic Ca{sup 2+} activity ([Ca{sup 2+}]{sub i}). Store-operated Ca{sup 2+}-entry (SOCE) that increases intracellular [Ca{sup 2+}] is accomplished by Orai1, a pore-forming ion channel unit, the expression of which is stimulated by the transcription factor NFκB. The present study explored the expression of Orai1 and its regulators STIM1 and NFκB in human rhabdomyosarcoma cell lines and analyzed their impact on cell proliferation and migration. For the study human rhabdomyosarcoma cell lines RD (embryonal) and RH30 (alveolar) were analyzed for Orai1, STIM1, and NFκB transcription by RT-PCR and their corresponding proteins in Western blot. [Ca{sup 2+}]{sub i} was detected via Fura-2 fluorescence and SOCE – resulting from [Ca{sup 2+}]{sub i} increase following store depletion with extracellular Ca{sup 2+} removal and inhibition of the sarcoendoplasmatic reticular Ca{sup 2+} ATPase – detected with thapsigargin. Cell migration was analyzed in transwell and mitotic cell death with the clonogenic assay. In summary, Orai1, STIM1, and NFκB are expressed in embryonalmore » (RD) and alveolar (RH30) rhabdomyosarcoma. SOCE inhibitor BTP2, Orai1 inhibitor 2-APB, or NFκB inhibitor wogonin virtually abrogated (BTP2, 2-APB) or significantly reduced (wogonin) SOCE. Moreover, SOCE inhibitors 2-APB and BTP2 and wogonin significantly inhibited migration and proliferation of both, RD and RH30 cells. These results suggest that Orai1 signaling is involved in SOCE into rhabdomyosarcoma cells thus contributing to migration, invasion and proliferation. - Highlights: • Orai1, STIM1, and NFκB are expressed in RD and RH30 rhabdomyosarcoma cell lines. • Orai1, STIM1, and NFκB are significantly upregulated in the RH30 cell line and leads to a significantly increased SOCE. • Orai1 signaling is involved in SOCE thus contributing to migration, invasion and proliferation.« less

Authors:
 [1];  [1];  [2];  [3];  [2];  [1];  [1];  [4]
  1. Department of Pediatric Surgery & Pediatric Urology, Eberhard-Karls-University, Hoppe-Seyler Straße 3, 72076, Tuebingen (Germany)
  2. Department of Cardiology & Vascular Medicine and Physiology, Eberhard-Karls-University, Gmelinstr.5/Otfried-Mueller-Str.10, 72076, Tuebingen (Germany)
  3. Department of Biochemistry, University of Crete Medical School, GR-71003, Heraklion, Crete (Greece)
  4. (Germany)
Publication Date:
OSTI Identifier:
22606150
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 477; Journal Issue: 1; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; APOPTOSIS; CALCIUM IONS; CELL PROLIFERATION; CONNECTIVE TISSUE; FLUORESCENCE; INHIBITION; METASTASES; PEDIATRICS; POLYMERASE CHAIN REACTION; RADIOTHERAPY; RHABDOMYOSARCOMAS; TRANSCRIPTION; TRANSCRIPTION FACTORS

Citation Formats

Schmid, Evi, E-mail: Evi.Schmid@med.uni-tuebingen.de, Stagno, Matias Julian, Yan, Jing, Stournaras, Christos, Lang, Florian, Fuchs, Jörg, Seitz, Guido, and Department of Pediatric Surgery, University Hospital Marburg, Marburg. Store-operated Ca{sup 2+} entry in rhabdomyosarcoma cells. United States: N. p., 2016. Web. doi:10.1016/J.BBRC.2016.06.032.
Schmid, Evi, E-mail: Evi.Schmid@med.uni-tuebingen.de, Stagno, Matias Julian, Yan, Jing, Stournaras, Christos, Lang, Florian, Fuchs, Jörg, Seitz, Guido, & Department of Pediatric Surgery, University Hospital Marburg, Marburg. Store-operated Ca{sup 2+} entry in rhabdomyosarcoma cells. United States. doi:10.1016/J.BBRC.2016.06.032.
Schmid, Evi, E-mail: Evi.Schmid@med.uni-tuebingen.de, Stagno, Matias Julian, Yan, Jing, Stournaras, Christos, Lang, Florian, Fuchs, Jörg, Seitz, Guido, and Department of Pediatric Surgery, University Hospital Marburg, Marburg. 2016. "Store-operated Ca{sup 2+} entry in rhabdomyosarcoma cells". United States. doi:10.1016/J.BBRC.2016.06.032.
@article{osti_22606150,
title = {Store-operated Ca{sup 2+} entry in rhabdomyosarcoma cells},
author = {Schmid, Evi, E-mail: Evi.Schmid@med.uni-tuebingen.de and Stagno, Matias Julian and Yan, Jing and Stournaras, Christos and Lang, Florian and Fuchs, Jörg and Seitz, Guido and Department of Pediatric Surgery, University Hospital Marburg, Marburg},
abstractNote = {Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, has an intrinsic or early-acquisition of resistance to chemo- and radiation therapy. Molecular determinants pivotal for RMS migration, metastatic invasion, cell proliferation, and survival are incompletely identified. Migration and cell proliferation were shown to correlate with cytosolic Ca{sup 2+} activity ([Ca{sup 2+}]{sub i}). Store-operated Ca{sup 2+}-entry (SOCE) that increases intracellular [Ca{sup 2+}] is accomplished by Orai1, a pore-forming ion channel unit, the expression of which is stimulated by the transcription factor NFκB. The present study explored the expression of Orai1 and its regulators STIM1 and NFκB in human rhabdomyosarcoma cell lines and analyzed their impact on cell proliferation and migration. For the study human rhabdomyosarcoma cell lines RD (embryonal) and RH30 (alveolar) were analyzed for Orai1, STIM1, and NFκB transcription by RT-PCR and their corresponding proteins in Western blot. [Ca{sup 2+}]{sub i} was detected via Fura-2 fluorescence and SOCE – resulting from [Ca{sup 2+}]{sub i} increase following store depletion with extracellular Ca{sup 2+} removal and inhibition of the sarcoendoplasmatic reticular Ca{sup 2+} ATPase – detected with thapsigargin. Cell migration was analyzed in transwell and mitotic cell death with the clonogenic assay. In summary, Orai1, STIM1, and NFκB are expressed in embryonal (RD) and alveolar (RH30) rhabdomyosarcoma. SOCE inhibitor BTP2, Orai1 inhibitor 2-APB, or NFκB inhibitor wogonin virtually abrogated (BTP2, 2-APB) or significantly reduced (wogonin) SOCE. Moreover, SOCE inhibitors 2-APB and BTP2 and wogonin significantly inhibited migration and proliferation of both, RD and RH30 cells. These results suggest that Orai1 signaling is involved in SOCE into rhabdomyosarcoma cells thus contributing to migration, invasion and proliferation. - Highlights: • Orai1, STIM1, and NFκB are expressed in RD and RH30 rhabdomyosarcoma cell lines. • Orai1, STIM1, and NFκB are significantly upregulated in the RH30 cell line and leads to a significantly increased SOCE. • Orai1 signaling is involved in SOCE thus contributing to migration, invasion and proliferation.},
doi = {10.1016/J.BBRC.2016.06.032},
journal = {Biochemical and Biophysical Research Communications},
number = 1,
volume = 477,
place = {United States},
year = 2016,
month = 8
}
  • Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) V1. However, capsaicin-stimulated [Ca{sup 2+}]{sub i} elevation occurred only at high concentrations ({>=}100 {mu}M). This response was substantially decreased in a Ca{sup 2+}-free medium. Vanilloids displayed similar patterns of Ca{sup 2+} response with the rank order of potency as follows: scutigeral>resiniferatoxin>capsazepine>capsaicin=olvanil>isovelleral. Arachidonyl dopamine (AAD), an endogenous ligand for TRPV1, failed to desensitize the subsequent capsaicin challenge. Capsaicin-induced Ca{sup 2+} response was not affected by 8-bromo-cyclic ADP-ribose (8-Br-cADPR), the ryanodine receptor blocker, but was slightly attenuated by 1-[6-[17{beta}-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,= 5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, 1-[{beta}-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), the blockermore » of receptor-gated and store-operated Ca{sup 2+} (SOC) channels, 2-aminoethyldiphenyl borate (2-APB), the blocker of D-myo-inositol 1,4,5-trisphospahte (IP{sub 3}) receptor and Ca{sup 2+} influx, and by ruthenium red, a blocker of TRPV channels, and enhanced by the Ca{sup 2+} channels blocker, cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12330A) and Na{sup +}-deprivation. In addition, capsaicin had no effect on the plasma membrane Ca{sup 2+}-ATPase activity or the production of nitric oxide (NO) and reactive oxygen intermediates (ROI) or on the total thiols content. Capsaicin ({>=}100 {mu}M) inhibited the cyclopiazonic acid (CPA)-induced store-operated Ca{sup 2+} entry (SOCE). In the absence of external Ca{sup 2+}, the robust Ca{sup 2+} entry after subsequent addition of Ca{sup 2+} was decreased by capsaicin in CPA-activated cells. Capsaicin alone increased the actin cytoskeleton, and also increased the actin filament content in cell activation with CPA. These results indicate that capsaicin activates a TRPV1-independent non-SOCE pathway in neutrophils. The reorganization of the actin cytoskeleton is probably involved in the capsaicin inhibition of SOCE.« less
  • Heavy metal lead (Pb{sup 2+}) is a pollutant and causes severe toxicity when present in human tissues especially the nervous system. Recent reviews have suggested that Pb{sup 2+} can target Ca{sup 2+}-related proteins within neurons and that Ca{sup 2+} channels might be a candidate for Pb{sup 2+} entry. This study's main aim was to identify the functional entry pathway of Pb{sup 2+} into living cells. We firstly characterized the endogenous expression of Orai1 and STIM1 mRNA together with the level of thapsigargin (TG) stimulated capacitative Ca{sup 2+} entry in PC12 and HeLa cells; this was done by RT-PCR and time-lapsemore » Ca{sup 2+} imaging microscopy, respectively. Our data supported Orai1 and STIM1 as contributing to store-operated Ca{sup 2+} channel (SOC) basal activity. Secondly, using the indo-1 quenching method with the SOC blocker 2-APB, we observed that Pb{sup 2+} was able to enter cells directly through unactivated SOCs without TG pretreatment. Thirdly, we further demonstrated that co-expression of Orai1 and STIM1 differentially enhanced SOC functional activity (4-fold with PC12 and 5-fold with HeLa cells) and Pb{sup 2+} entry (5- to 7-fold with PC12 and 2-fold with HeLa cells). Furthermore, after a 1 h of Pb{sup 2+} exposure, the depolarization- and histamine-induced Ca{sup 2+} responses were significantly decreased in both PC12 and HeLa cells in a dose-dependent manner. This result indicated that the decreased Ca{sup 2+} responses were, in part, due to Pb{sup 2+} entry. In summary, our results suggest that SOCs are responsible for Pb{sup 2+} permeation and that the Orai1-STIM1 protein complex formed by functional SOCs is one of the molecular components involved in Pb{sup 2+} entry.« less
  • Activation of T-cells triggers store-operated Ca{sup 2+} entry, which begins a signaling cascade leading to induction of appropriate gene expression and eventually lymphocyte proliferation and differentiation. The simultaneous enhancement of Fas ligand gene expression in activated cells allows the immune response to be limited by committing the activated cells to apoptosis. In apoptotic cells the store-operated calcium entry is significantly inhibited. It has been documented that moderate activation of Fas receptor may cause reversible inhibition of store-operated channels by ceramide released from hydrolyzed sphingomyelin. Here we show that activation of Fas receptor in T-cells results in caspase-dependent decrease of cellularmore » STIM1 and Orai1 protein content. This effect may be responsible for the substantial inhibition of Ca{sup 2+} entry into Jurkat cells undergoing apoptosis. In turn, this inhibition might prevent overloading of cells with calcium and protect them against necrosis. -- Research highlights: {yields} Fas activation reduces STIM1 and Orai1 protein content in caspase dependent manner. {yields} Fas activation partially reduces mitochondrial potential in caspase dependent manner. {yields} Fas stimulation inhibits of store-operated Ca{sup 2+} entry in caspase dependent manner. {yields} Inhibition of Ca{sup 2+} entry in apoptotic cells may protect them from secondary necrosis.« less
  • Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromalmore » interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.« less
  • Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cyclemore » progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.« less