skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

Abstract

Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of functionmore » of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.« less

Authors:
 [1];  [2];  [3]; ; ; ; ; ; ; ; ;  [1];  [4]; ;  [5]
  1. Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan)
  2. Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan)
  3. Department of Legal Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan)
  4. Oncology Center, Asahikawa Medical University Hospital, Hokkaido 078-8510 (Japan)
  5. Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi 329-2763 (Japan)
Publication Date:
OSTI Identifier:
22606135
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 476; Journal Issue: 4; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; AMINO ACIDS; ELECTROPHORESIS; EXONS; GENES; HEPATOMAS; INTESTINAL ABSORPTION; IRON; MESSENGER-RNA; METABOLISM; POLYMERASE CHAIN REACTION; SPLICING

Citation Formats

Toki, Yasumichi, Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp, Tanaka, Hiroki, Yamamoto, Masayo, Hatayama, Mayumi, Ito, Satoshi, Ikuta, Katsuya, Shindo, Motohiro, Hasebe, Takumu, Nakajima, Shunsuke, Sawada, Koji, Fujiya, Mikihiro, Torimoto, Yoshihiro, Ohtake, Takaaki, and Kohgo, Yutaka. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines. United States: N. p., 2016. Web. doi:10.1016/J.BBRC.2016.05.153.
Toki, Yasumichi, Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp, Tanaka, Hiroki, Yamamoto, Masayo, Hatayama, Mayumi, Ito, Satoshi, Ikuta, Katsuya, Shindo, Motohiro, Hasebe, Takumu, Nakajima, Shunsuke, Sawada, Koji, Fujiya, Mikihiro, Torimoto, Yoshihiro, Ohtake, Takaaki, & Kohgo, Yutaka. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines. United States. doi:10.1016/J.BBRC.2016.05.153.
Toki, Yasumichi, Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp, Tanaka, Hiroki, Yamamoto, Masayo, Hatayama, Mayumi, Ito, Satoshi, Ikuta, Katsuya, Shindo, Motohiro, Hasebe, Takumu, Nakajima, Shunsuke, Sawada, Koji, Fujiya, Mikihiro, Torimoto, Yoshihiro, Ohtake, Takaaki, and Kohgo, Yutaka. Fri . "A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines". United States. doi:10.1016/J.BBRC.2016.05.153.
@article{osti_22606135,
title = {A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines},
author = {Toki, Yasumichi and Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp and Tanaka, Hiroki and Yamamoto, Masayo and Hatayama, Mayumi and Ito, Satoshi and Ikuta, Katsuya and Shindo, Motohiro and Hasebe, Takumu and Nakajima, Shunsuke and Sawada, Koji and Fujiya, Mikihiro and Torimoto, Yoshihiro and Ohtake, Takaaki and Kohgo, Yutaka},
abstractNote = {Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.},
doi = {10.1016/J.BBRC.2016.05.153},
journal = {Biochemical and Biophysical Research Communications},
number = 4,
volume = 476,
place = {United States},
year = {Fri Aug 05 00:00:00 EDT 2016},
month = {Fri Aug 05 00:00:00 EDT 2016}
}
  • Research highlights: {yields} miR-199a-3p targets CD44 in HCC. {yields} Proliferation and invasion are reduced by miR-199a-3p in CD44+ HCC. {yields} miR-199a-3p is reduced and CD44 protein is increased in HCC tissues. {yields} The duplex form of miR-199a-3p mimetic is required for activity. -- Abstract: Previous work by us and others reported decreased expression of miR-199a-3p in hepatocellular carcinoma (HCC) tissues compared to adjacent benign tissue. We report here a significant reduction of miR-199a-3p expression in 7 HCC cell lines. To determine if miR-199a-3p has a tumor suppressive role, pre-miR-199a-3p oligonucleotides were transfected into the HCC cell lines. Pre-miR-199a-3p oligonucleotide reducedmore » cell proliferation by approximately 60% compared to control oligonucleotide in only two cell lines (SNU449 and SNU423); the proliferation of the other 5 treated cell lines was similar to control oligonucleotide. A pre-miR-199a-3p oligonucleotide formulated with chemical modifications to enhance stability while preserving processing, reduced cell proliferation in SNU449 and SNU423 to the same extent as the commercially available pre-miR-199a-3p oligonucleotide. Furthermore, only the duplex miR-199a-3p oligonucleotide, and not the guide strand alone, was effective at reducing cell viability. Since a CD44 variant was essential for c-Met signaling [V. Orian-Rousseau, L. Chen, J.P. Sleeman, P. Herrlich, H. Ponta, CD44 is required for two consecutive steps in HGF/c-Met signaling, Genes Dev. 16 (2002) 3074-3086] and c-Met is a known miR-199a-3p target, we hypothesized that miR-199a-3p may also target CD44. Immunoblotting confirmed that only the two HCC lines that were sensitive to the effects of pre-miR-199a-3p were CD44+. Direct targeting of CD44 by miR-199a-3p was confirmed using luciferase reporter assays and immunoblotting. Transfection of miR-199a-3p into SNU449 cells reduced in vitro invasion and sensitized the cells to doxorubicin; both effects were enhanced when hyaluronic acid (HA) was added to the cell cultures. An inverse correlation between the expression of miR-199a-3p and CD44 protein was noted in primary HCC specimens. The ability of miR-199a-3p to selectively kill CD44+ HCC may be a useful targeted therapy for CD44+ HCC.« less
  • 17β-Estradiol (E2) has been proven to exert protective effects against HCC; however, its mechanism on HCC proliferation and suppression of invasion remains to be further explored. Because HCC up-regulates serum Interleukin-6 (IL-6) levels and Signal Transducer and Activator of Transcription 3 (STAT3), molecular agents that attenuate IL-6/STAT3 signaling can potentially suppress HCC development. In this study, we examined involvement of E2 in anoikis resistance that induces invasion capacities and chemo-resistance. Huh-BAT and HepG2 cells grown under anchorage-independent condition were selected. The anoikis-resistant (AR) cells showed stronger chemo-resistance against sorafenib, doxorubicin, 5-fluorouracil and cisplatin compared to adherent HCC cells. AR HCCmore » cells exhibited decreased expression of E-cadherin and increased expression of the N-cadherin and vimentin compared to adherent HCC cells. We then demonstrated that E2 suppressed cell proliferation in AR HCC cells. IL-6 treatment enhanced invasive characteristics, and E2 reversed it. Regarding mechanism of E2, it decreased in the phosphorylation of STAT3 that overexpressed on AR HCC cells. The inhibitory effect of E2 on cell growth was accompanied with cell cycle arrest at G2/M phase and caspase-3/9/PARP activation through c-Jun N-terminal Kinase (JNK) phosphorylation. Taken together, these findings suggested that E2 inhibited the proliferation of AR HCC cells through down-regulation of IL-6/STAT3 signaling. Thus, E2 can be a potential therapeutic drug for treatment of metastatic or chemo-resistant HCC. -- Highlights: •Anoikis-resistant HCC cells characterized chemo-resistant and metastatic potentials. •17β-Estradiol down-regulated IL-6/STAT3 signaling in anoikis-resistant HCC cells. •17β-Estradiol suppressed cell proliferation by inducing G2/M phase arrest and apoptosis though JNK phosphorylation.« less
  • Asparagine synthetase (AS) is the enzyme responsible for the ATP-dependant conversion of aspartic acid to asparagine. The AS gene is expressed constitutively in most mammalian cells, including cells of the lymphoid lineage, as a 2 kb mRNA. In some leukemic phenotypes, AS expression is abrogated, resulting in no detectable enzyme activity. These cells are rendered sensitive to killing by L-asparaginase, which destroys extracellular asparagine. Prolonged treatment of leukemic cells with this agent can lead to resistance and the reappearance of AS activity, suggesting derepression of the AS gene, which has been shown to be regulated by intracellular levels of asparagine.more » Modulation of AS expression by asparagine employs cis and trans-acting elements involved in transcriptional and translational regulation. We have cloned and sequenced the human AS gene and surrounding sequence elements as well as the full-length cDNA. Using probes specific to the third and fourth exons of AS, we have identified an additional higher molecular weight mRNA (2.7 kb) in Northern blots derived from a chronic myelogenous leukemia and a colon carcinoma but not in normal lymphocytic or other human cell lines. We speculate that elements present in the cancer-derived mRNAs may be involved in the derepression of AS activity. This hypothesis is being evaluated by RNase protection assays using RNA isolated from a variety of human cell lines to characterize and elucidate the nature of this additional AS encoded message.« less
  • Sequence analysis of the T-cell-specific MAL gene revealed four exons, each encoding a hydrophobic, presumably membrane-associated, segment and its adjacent hydrophilic sequence. Amplification by the polymerase chain reaction of cDNA from different T-cell samples indicated the existence of four different forms of MAL mRNA, termed MAL-a, -b, -c, and -d, that arise from differential usage of exons II and/or III. As the three introns were located between complete codons, the reading frame was maintained in all the transcripts. A model resembling the structures postulated for different proteolipid proteins is proposed for the protein encoded by each alternative mRNA species. 9more » refs., 3 figs.« less
  • The authors describe here a third region of variability in human fibronectin (FN) due to alternative RNA splicing. Two other positions of alternative splicing have been reported previously (ED and IIICS). The third region involves a 273-nucleotide exon encoding exactly one 91-amino acid repeat of type III homology, located between the DNA- and the cell-binding domains of FN, which is either included in or excluded from FN mRNA. The two mRNA variants arising by an exon-skipping mechanism are present in cells known to synthesize the cellular form of FN. However, liver cells, which are the source of plasma FN, producemore » only messengers without the extra type III sequence. Therefore, the region described here resembles, both structurally and functionally, the previously described ED (for extra domain) region, located toward the C terminus of the molecule between the cell- and heparin- (hep 2) binding domains. The authors conclude that both the extra type III repeat (names EDII) and ED represent sequences restricted to cellular FN. Combination of all the possible patterns of splicing in the three regions described to date may generate up to 20 distinct FN polypeptides from a single gene.« less