skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The electrical characteristics of the dielectric barrier discharges

Abstract

The electrical characteristics of the dielectric barrier discharges have been studied in this paper under different operating conditions. The dielectric barrier discharges were formed inside two reactors composed of electrodes in the shape of two parallel plates. The dielectric layers inside these reactors were pasted on the surface of one electrode only in the first reactor and on the surfaces of the two electrodes in the second reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at the normal temperature and pressure, in parallel with applying a sinusoidal ac voltage between the electrodes of the reactor. The amount of the electric charge that flows from the reactors to the external circuit has been studied experimentally versus the ac peak voltage applied to them. An analytical model has been obtained for calculating the electrical characteristics of the dielectric barrier discharges that were formed inside the reactors during a complete cycle of the ac voltage. The results that were calculated by using this model have agreed well with the experimental results under the different operating conditions.

Authors:
 [1];  [2]
  1. Department of Physics, College of Science and Humanitarian Studies at Alkharj, Prince Sattam bin Abdulaziz University, P.O. Box 83, Alkharj 11942 (Saudi Arabia)
  2. (Egypt)
Publication Date:
OSTI Identifier:
22600159
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 23; Journal Issue: 6; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; AIR; DIELECTRIC MATERIALS; ELECTRIC CHARGES; ELECTRIC POTENTIAL; ELECTRODES; LAYERS; PEAKS; PLATES; SURFACES

Citation Formats

Yehia, Ashraf, E-mail: yehia30161@yahoo.com, and Department of Physics, Faculty of Science, Assiut University, Assiut 71516. The electrical characteristics of the dielectric barrier discharges. United States: N. p., 2016. Web. doi:10.1063/1.4954300.
Yehia, Ashraf, E-mail: yehia30161@yahoo.com, & Department of Physics, Faculty of Science, Assiut University, Assiut 71516. The electrical characteristics of the dielectric barrier discharges. United States. doi:10.1063/1.4954300.
Yehia, Ashraf, E-mail: yehia30161@yahoo.com, and Department of Physics, Faculty of Science, Assiut University, Assiut 71516. 2016. "The electrical characteristics of the dielectric barrier discharges". United States. doi:10.1063/1.4954300.
@article{osti_22600159,
title = {The electrical characteristics of the dielectric barrier discharges},
author = {Yehia, Ashraf, E-mail: yehia30161@yahoo.com and Department of Physics, Faculty of Science, Assiut University, Assiut 71516},
abstractNote = {The electrical characteristics of the dielectric barrier discharges have been studied in this paper under different operating conditions. The dielectric barrier discharges were formed inside two reactors composed of electrodes in the shape of two parallel plates. The dielectric layers inside these reactors were pasted on the surface of one electrode only in the first reactor and on the surfaces of the two electrodes in the second reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at the normal temperature and pressure, in parallel with applying a sinusoidal ac voltage between the electrodes of the reactor. The amount of the electric charge that flows from the reactors to the external circuit has been studied experimentally versus the ac peak voltage applied to them. An analytical model has been obtained for calculating the electrical characteristics of the dielectric barrier discharges that were formed inside the reactors during a complete cycle of the ac voltage. The results that were calculated by using this model have agreed well with the experimental results under the different operating conditions.},
doi = {10.1063/1.4954300},
journal = {Physics of Plasmas},
number = 6,
volume = 23,
place = {United States},
year = 2016,
month = 6
}
  • In this paper we report the experimental investigation of a pure xenon monofilamentary dielectric barrier discharge (DBD), using a high voltage power supply. Stable microdischarges were achieved and studied in the pressure range of 100-400 Torr, at frequencies between 10 and 40 kHz. Successive 3 ns exposure time snapshots of the discharge clearly show how it built up. Its diameter was about 0.26 mm. The discharge voltage and current were determined from the measurement of the supply voltage and current. Compared to those in argon, the current pulses were shorter (less than 30 ns, above 200 Torr) and had muchmore » higher peak values. Ignition voltages were also higher in the heavier gas. Electrical energy and vacuum ultraviolet radiation energy of the second continuum of xenon were both independent of frequency. They both varied almost linearly with pressure. The measured DBD vuv efficiency of a single xenon microdischarge reported here was between 55% and 60%, and the maximum value was reached for 200 Torr. These values were twice those reported for multifilamentary discharges working with a sinusoidal supply. They were similar to those obtained for multifilamentary dielectric barrier discharges excited with short voltage pulses.« less
  • Period multiplication and chaos behaviors in atmospheric glow discharges are important to understand atmospheric glow plasma stability and to optimize its applications. In this paper, we study the period-two discharge characteristics in argon atmospheric dielectric-barrier discharges using a one-dimension fluid model. Under certain conditions, period-two discharges can occur at different excitation frequencies and exhibit different current and voltage behaviors. When the discharge current becomes highly symmetrical the period-two discharge can reach to a steady state, which sustains over a broad frequency range. At the sufficiently high excitation frequency, the period-two discharge in atmospheric argon shows noticeably different behaviors from themore » discharges generated at kilohertz frequency. The spatial characteristics of period-two discharge as well as the influence of driving frequency on period-two discharge behaviors are also investigated.« less
  • The electrical characteristics of a filamentary dielectric barrier discharge using parallel-plate electrodes geometry were statistically studied. The DBD's system was powered by a 50 Hz power supply and operated at atmospheric pressure. The influence of the air gap and position of dielectric on the discharge had been investigated. It was found that the air gap distance and position of dielectric had significant influence on the discharge current pulse. The results showed that discharge with large distance between the high voltage electrode and the dielectric would generate higher current pulses during the positive cycle. The discharge energy of single pulse wasmore » also determined.« less
  • In this work, a comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharges in He/O{sub 2} and in Ar/O{sub 2} at atmospheric pressure has been performed by means of the numerical simulation based on a 1-D fluid model at frequencies below 100 kHz. The frequency dependences of the characteristic quantities of the discharges in the two gases have been systematically calculated and analyzed under the oxygen concentrations below 2%. The characteristic quantities include the discharge current density, the averaged electron density, the electric field, and the averaged electron temperature. Especially, the frequency effects onmore » the averaged particle densities of the reactive species have also been calculated. This work gives the following significant results. For the two gases, there are two bipolar discharges in one period of applied voltage pulse under the considered frequency range and oxygen concentrations, as occurred in the pure noble gases. The frequency affects the two discharges in He/O{sub 2}, but in Ar/O{sub 2}, it induces a strong effect only on the first discharge. For the first discharge in each gas, there is a characteristic frequency at which the characteristic quantities reach their respective minimum, and this frequency appears earlier for Ar/O{sub 2}. For the second discharge in Ar/O{sub 2}, the averaged electron density presents a slight variation with the frequency. In addition, the discharge in Ar/O{sub 2} is strong and the averaged electron temperature is low, compared to those in He/O{sub 2.} The total averaged particle density of the reactive species in Ar/O{sub 2} is larger than those in He/O{sub 2} by about one order of magnitude.« less
  • The interaction between micro-discharges involved in surface discharges (SDs) is studied in dielectric barrier discharge system. Instantaneous images taken by high speed cameras show that the SDs are induced by volume discharges (VDs). They cannot cross the midperpendicular of two neighbouring volume charges at low voltage while they stretch along it at high voltage, indicating that there is interaction between SDs. The differences of plasma parameters between SD and VD are studied by optical emission spectroscopy. The simulation of the electric fields of the wall charges accumulated by VD further confirms the existence of the interaction.