skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4943285· OSTI ID:22599120
; ; ; ; ;  [1];  [2];  [3]
  1. State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an Shaanxi 710049 (China)
  2. State Grid Shaanxi Electric Power Company, Xi'an, Shaanxi (China)
  3. Electric Power Research Institute of State Grid Shaanxi Electric Power Company, Xi'an, Shaanxi (China)

This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case substantially differ from the arc appearance and the distribution of Lorentz force in the laminar-model case. Thus, the moving process of the arc in the turbulence-model case is slowed down and slower than in the laminar-model case. Moreover, the more extensive arc column in the turbulence-model case reduces the total arc resistance, which results in a lower arc voltage, more consistent with the experimental results than the arc voltage in the laminar-model case. Therefore, the air plasma inside this air DCCB is believed to be in the turbulence state, and the turbulence model is more suitable than the laminar model for the arc simulation of this kind of air DCCB.

OSTI ID:
22599120
Journal Information:
Physics of Plasmas, Vol. 23, Issue 4; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English