skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First-principles study of twin grain boundaries in epitaxial BaSi{sub 2} on Si(111)

Abstract

Epitaxial films of BaSi{sub 2} on Si(111) for solar cell applications possess three epitaxial variants and exhibit a minority carrier diffusion length (ca. 9.4 μm) much larger than the domain size (ca. 0.2 μm); thus, the domain boundaries (DBs) between the variants do not act as carrier recombination centers. In this work, transmission electron microscopy (TEM) was used to observe the atomic arrangements around the DBs in BaSi{sub 2} epitaxial films on Si(111), and the most stable atomic configuration was determined by first-principles calculations based on density functional theory to provide possible interface models. Bright-field TEM along the a-axis of BaSi{sub 2} revealed that each DB was a twin boundary between two different epitaxial variants, and that Ba{sup (II)} atoms form hexagons containing central Ba{sup (I)} atoms in both the bulk and DB regions. Four possible interface models containing Ba{sup (I)}-atom interface layers were constructed, each consistent with TEM observations and distinguished by the relationship between the Si tetrahedron arrays in the two domains adjacent across the interface. This study assessed the structural relaxation of initial interface models constructed from surface slabs terminated by Ba{sup (I)} atoms or from zigzag surface slabs terminated by Si tetrahedra and Ba{sup (II)} atoms. In thesemore » models, the interactions or relative positions between Si tetrahedra appear to dominate the relaxation behavior and DB energies. One of the four interface models whose relationship between first-neighboring Si tetrahedra across the interface was the same as that in the bulk was particularly stable, with a DB energy of 95 mJ/m{sup 2}. There were no significant differences in the partial densities of states and band gaps between the bulk and DB regions, and it was therefore concluded that such DBs do not affect the minority carrier properties of BaSi{sub 2}.« less

Authors:
;  [1];  [2]
  1. Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)
  2. Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577 (Japan)
Publication Date:
OSTI Identifier:
22598845
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 120; Journal Issue: 8; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMS; BARIUM COMPOUNDS; DENSITY FUNCTIONAL METHOD; DENSITY OF STATES; DIFFUSION LENGTH; EPITAXY; FILMS; GRAIN BOUNDARIES; INTERFACES; RECOMBINATION; RELAXATION; SILICON SOLAR CELLS; SLABS; SURFACES; TRANSMISSION ELECTRON MICROSCOPY

Citation Formats

Baba, Masakazu, Suemasu, Takashi, E-mail: suemasu@bk.tsukuba.ac.jp, and Kohyama, Masanori. First-principles study of twin grain boundaries in epitaxial BaSi{sub 2} on Si(111). United States: N. p., 2016. Web. doi:10.1063/1.4961603.
Baba, Masakazu, Suemasu, Takashi, E-mail: suemasu@bk.tsukuba.ac.jp, & Kohyama, Masanori. First-principles study of twin grain boundaries in epitaxial BaSi{sub 2} on Si(111). United States. doi:10.1063/1.4961603.
Baba, Masakazu, Suemasu, Takashi, E-mail: suemasu@bk.tsukuba.ac.jp, and Kohyama, Masanori. Sun . "First-principles study of twin grain boundaries in epitaxial BaSi{sub 2} on Si(111)". United States. doi:10.1063/1.4961603.
@article{osti_22598845,
title = {First-principles study of twin grain boundaries in epitaxial BaSi{sub 2} on Si(111)},
author = {Baba, Masakazu and Suemasu, Takashi, E-mail: suemasu@bk.tsukuba.ac.jp and Kohyama, Masanori},
abstractNote = {Epitaxial films of BaSi{sub 2} on Si(111) for solar cell applications possess three epitaxial variants and exhibit a minority carrier diffusion length (ca. 9.4 μm) much larger than the domain size (ca. 0.2 μm); thus, the domain boundaries (DBs) between the variants do not act as carrier recombination centers. In this work, transmission electron microscopy (TEM) was used to observe the atomic arrangements around the DBs in BaSi{sub 2} epitaxial films on Si(111), and the most stable atomic configuration was determined by first-principles calculations based on density functional theory to provide possible interface models. Bright-field TEM along the a-axis of BaSi{sub 2} revealed that each DB was a twin boundary between two different epitaxial variants, and that Ba{sup (II)} atoms form hexagons containing central Ba{sup (I)} atoms in both the bulk and DB regions. Four possible interface models containing Ba{sup (I)}-atom interface layers were constructed, each consistent with TEM observations and distinguished by the relationship between the Si tetrahedron arrays in the two domains adjacent across the interface. This study assessed the structural relaxation of initial interface models constructed from surface slabs terminated by Ba{sup (I)} atoms or from zigzag surface slabs terminated by Si tetrahedra and Ba{sup (II)} atoms. In these models, the interactions or relative positions between Si tetrahedra appear to dominate the relaxation behavior and DB energies. One of the four interface models whose relationship between first-neighboring Si tetrahedra across the interface was the same as that in the bulk was particularly stable, with a DB energy of 95 mJ/m{sup 2}. There were no significant differences in the partial densities of states and band gaps between the bulk and DB regions, and it was therefore concluded that such DBs do not affect the minority carrier properties of BaSi{sub 2}.},
doi = {10.1063/1.4961603},
journal = {Journal of Applied Physics},
number = 8,
volume = 120,
place = {United States},
year = {Sun Aug 28 00:00:00 EDT 2016},
month = {Sun Aug 28 00:00:00 EDT 2016}
}
  • A 180-nm-thick boron (B) layer was deposited on a 300-nm-thick a-axis-oriented BaSi{sub 2} epitaxial film grown by molecular beam epitaxy on Si(111) and was annealed at different temperatures in ultrahigh vacuum. The depth profiles of B were investigated using secondary ion mass spectrometry (SIMS) with O{sup 2+}, and the diffusion coefficients of B were evaluated. The B profiles were reproduced well by taking both the lattice and the grain boundary (GB) diffusions into consideration. The cross-sectional transmission electron microscopy (TEM) image revealed that the GBs of the BaSi{sub 2} film were very sharp and normal to the sample surface. Themore » plan-view TEM image exhibited that the grain size of the BaSi{sub 2} film was approximately 0.6 {mu}m. The temperature dependence of lattice and GB diffusion coefficients was derived from the SIMS profiles, and their activation energies were found to be 4.6 eV and 4.4 eV, respectively.« less
  • We have fabricated approximately 0.5-μm-thick undoped n-BaSi{sub 2} epitaxial films with various average grain areas ranging from 2.6 to 23.3 μm{sup 2} on Si(111) by molecular beam epitaxy, and investigated their minority-carrier lifetime properties by the microwave-detected photoconductivity decay method at room temperature. The measured excess-carrier decay curves were divided into three parts in terms of decay rate. We characterized the BaSi{sub 2} films using the decay time of the second decay mode, τ{sub SRH}, caused by Shockley-Read-Hall recombination without the carrier trapping effect, as a measure of the minority-carrier properties in the BaSi{sub 2} films. The measured τ{sub SRH} wasmore » grouped into two, independently of the average grain area of BaSi{sub 2}. BaSi{sub 2} films with cloudy surfaces or capped intentionally with a 3 nm Ba or Si layer, showed large τ{sub SRH} (ca. 8 μs), whereas those with mirror surfaces much smaller τ{sub SRH} (ca. 0.4 μs). X-ray photoelectron spectroscopy measurements were performed to discuss the surface region of the BaSi{sub 2} films.« less
  • The crystal structure, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} with varying Eu doping concentrations are computed by the density functional theory (DFT) and compared with experimental results. The results show that the lattice parameters of primitive cells of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} become smaller and Eu–N bond length shortens as Eu concentration increases. The band structure of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} exhibits a direct optical band gap and it's propitious to luminescence. The energy differences from the lowest Eu 5d state to the lowest Eu 4f state decrease with increasing Eumore » concentrations. The analysis of simulative absorption spectra indicates that the electron transition from Eu 4f states to 5d states of both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. Under the coupling effect between Eu and Ba, Ba in BaSi{sub 2}O{sub 2}N{sub 2} exhibits longer wavelength absorption and increases absorption efficiency. The emission wavelength is deduced by measuring energy differences from the lowest Eu 5d state to the lowest Eu 4f state, and the result is in good agreement with experimental value within experimental Eu{sup 2+} doping range. - Graphical abstract: The structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT and its absorption mechanism is analysed. Results show that absorption peak α is from the host lattice absorption. The absorption peaks β, γ and δ are from Eu 4f to Eu 5d and Ba 6s 5d states. The absorption is attributed to the coupling effect of Eu and Ba atom. - Highlights: • The crystal, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT. • The lattice parameters of primitive cells reduces and Eu–N bond length shortens as Eu{sup 2+} increases. • The energy gap from Eu 5d state to Eu 4f state decrease with increasing Eu concentrations. • Both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. • The deduced emission wavelength is in good agreement with experimental value.« less
  • Potential variations across the grain boundaries (GBs) in a 100 nm thick undoped n-BaSi{sub 2} film on a cast-grown multicrystalline Si (mc-Si) substrate are evaluated using Kelvin probe force microscopy (KFM). The θ-2θ X-ray diffraction pattern reveals diffraction peaks, such as (201), (301), (410), and (411) of BaSi{sub 2}. Local-area electron backscatter diffraction reveals that the a-axis of BaSi{sub 2} is tilted slightly from the surface normal, depending on the local crystal plane of the mc-Si. KFM measurements show that the potentials are not significantly disordered in the grown BaSi{sub 2}, even around the GBs of mc-Si. The potentials are highermore » at GBs of BaSi{sub 2} around Si GBs that are formed by grains with a Si(111) face and those with faces that deviate slightly from Si(111). Thus, downward band bending occurs at these BaSi{sub 2} GBs. Minority carriers (holes) undergo a repelling force near the GBs, which may suppress recombination as in the case of undoped n-BaSi{sub 2} epitaxial films on a single crystal Si(111) substrate. The barrier height for hole transport across the GBs varies in the range from 10 to 55 meV. The potentials are also higher at the BaSi{sub 2} GBs grown around Si GBs composed of grains with Si(001) and Si(111) faces. The barrier height for hole transport ranges from 5 to 55 meV. These results indicate that BaSi{sub 2} GBs formed on (111)-dominant Si surfaces do not have a negative influence on the minority-carrier properties, and thus BaSi{sub 2} formed on underlayers, such as (111)-oriented Si or Ge and on (111)-oriented mc-Si, can be utilized as a solar cell active layer.« less
  • Potential variations around the grain boundaries (GBs) in antimony (Sb)-doped n-type and boron (B)-doped p-type BaSi₂ epitaxial films on Si(111) were evaluated by Kelvin probe force microscopy. Sb-doped n-BaSi₂ films exhibited positively charged GBs with a downward band bending at the GBs. The average barrier height for holes was approximately 10 meV for an electron concentration n ≈ 10¹⁷ cm⁻³. This downward band bending changed to upward band bending when n was increased to n = 1.8 × 10¹⁸cm⁻³. In the B-doped p-BaSi₂ films, the upward band bending was observed for a hole concentration p ≈ 10¹⁸cm⁻³. The average barriermore » height for electrons decreased from approximately 25 to 15 meV when p was increased from p = 2.7 × 10¹⁸ to p = 4.0 × 10¹⁸ cm⁻³. These results are explained under the assumption that the position of the Fermi level E{sub f} at GBs depends on the degree of occupancy of defect states at the GBs, while E{sub f} approached the bottom of the conduction band or the top of the valence band in the BaSi₂ grain interiors with increasing impurity concentrations. In both cases, such small barrier heights may not deteriorate the carrier transport properties. The electronic structures of impurity-doped BaSi₂ are also discussed using first-principles pseudopotential method to discuss the insertion sites of impurity atoms and clarify the reason for the observed n-type conduction in the Sb-doped BaSi₂ and p-type conduction in the B-doped BaSi₂.« less