skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

Abstract

We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.

Authors:
 [1];  [1];  [2]
  1. Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan)
  2. (Japan)
Publication Date:
OSTI Identifier:
22598783
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 476; Journal Issue: 3; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; GENES; HELA CELLS; INHIBITION; LEUKEMIA; LIGASES; POLYPEPTIDES; PUROMYCIN

Citation Formats

Matsumoto, Hotaru, Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp, and Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition. United States: N. p., 2016. Web. doi:10.1016/J.BBRC.2016.05.025.
Matsumoto, Hotaru, Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp, & Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition. United States. doi:10.1016/J.BBRC.2016.05.025.
Matsumoto, Hotaru, Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp, and Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto. 2016. "Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition". United States. doi:10.1016/J.BBRC.2016.05.025.
@article{osti_22598783,
title = {Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition},
author = {Matsumoto, Hotaru and Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp and Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto},
abstractNote = {We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.},
doi = {10.1016/J.BBRC.2016.05.025},
journal = {Biochemical and Biophysical Research Communications},
number = 3,
volume = 476,
place = {United States},
year = 2016,
month = 7
}
  • The amino-nucleoside antibiotic, puromycin, acts by covalently linking to elongating polypeptide chains on ribosomes to generate prematurely terminated immature polypeptides. The trafficking of puromycin-conjugated (puromycylated) immature polypeptides within cell has, however, remained elusive. In this study, using O-propargyl-puromycin (OP-Puro), the distribution of puromycylated polypeptides was assessed in HeLa cells by click chemistry. Under standard culture conditions, OP-Puro signals were detected in the cytoplasm and nucleus with the highest concentrations in the nucleolus. Intriguingly, when proteasome activities were aborted using MG132, OP-Puro signals began to accumulate at promyelocytic leukemia nuclear bodies (PML-NBs) in addition to the nucleolus. We also found promiscuousmore » association of OP-Puro signals with SUMO-2/3 and ubiquitin at PML-NBs, but not at the nucleolus, during abortive proteasome activities. This study reveals a previously unknown distribution of OP-Puro that argues for a nuclear function in regulating immature protein homeostasis. -- Highlights: •Click chemistry detects O-propargyl-puromycin (OP-Puro) signals in the nucleus. •OP-Puro accumulates at PML-NBs during abortive proteasome activities. •SUMO and ubiquitin are promiscuously associated with OP-Puro at PML-NBs. •The nucleus may function in immature protein homeostasis.« less
  • Research highlights: {yields} Distinct inclusion bodies are developed by inhibition of UPP and ALP. {yields} The inclusion bodies differ in morphology, localization and formation process. {yields} The inclusion bodies are distinguishable by the localization of TSC2. {yields} Inhibition of both UPP and ALP simultaneously induces those inclusion bodies. -- Abstract: Accumulation of misfolded proteins is caused by the impairment of protein quality control systems, such as ubiquitin-proteasome pathway (UPP) and autophagy-lysosome pathway (ALP). In this study, the formation of inclusion bodies was examined after the blockade of UPP and/or ALP in A549 cells. UPP inhibition induced a single and largemore » inclusion body localized in microtubule-organizing center. Interestingly, however, ALP inhibition generated dispersed small inclusion bodies in the cytoplasm. Tuberous sclerosis complex 2 was selectively accumulated in the inclusion bodies of UPP-inhibited cells, but not those of ALP-inhibited cells. Blockade of transcription and translation entirely inhibited the formation of inclusion body induced by UPP inhibition, but partially by ALP inhibition. Moreover, the simultaneous inhibition of two protein catabolic pathways independently developed two distinct inclusion bodies within a single cell. These findings clearly demonstrated that dysfunction of each catabolic pathway induced formation and accumulation of unique inclusion bodies on the basis of morphology, localization and formation process in A549 cells.« less
  • Proteasome inhibitors exhibit antitumoral activity against malignancies of different histology. Emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that activation of survival signaling cascades might compromise their antitumoral effects. Bcl-2-associated athanogene (BAG) family proteins are characterized by their property of interaction with a variety of partners involved in modulating the proliferation/death balance, including heat shock proteins (HSP), Bcl-2, Raf-1. In this report, we demonstrated that BAG3 is a novel antiapoptotic molecule induced by proteasome inhibitors in various cancer cells at the transcriptional level. Moreover, we demonstrated thatmore » BAG3 knockdown by siRNA sensitized cancer cells to MG132-induced apoptosis. Taken together, our results suggest that BAG3 induction might represents as an unwanted molecular consequence of utilizing proteasome inhibitors to combat tumors.« less