skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4958845· OSTI ID:22597815
; ; ; ; ; ;  [1]
  1. Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan)

We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated C{sub α} = C{sub β} configuration attributed to a thiophene ring in PEDOT and an out-of-plane configuration of -SO{sub 3} groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, I{sub qui}/I{sub ben}. The highest power conversion efficiency for the spin-coated PEDOT:PSS/c-Si heterojunction solar cells was 13.3% for I{sub qui}/I{sub ben} = 9–10 without employing any light harvesting methods.

OSTI ID:
22597815
Journal Information:
Journal of Applied Physics, Vol. 120, Issue 3; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English