skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge

Abstract

This work examines the growth dynamics of TiO{sub 2}-SiO{sub 2} nanocomposite coatings in plane-to-plane Dielectric Barrier Discharges (DBDs) at atmospheric pressure operated in a Townsend regime using nebulized TiO{sub 2} colloidal suspension in hexamethyldisiloxane as the growth precursors. For low-frequency (LF) sinusoidal voltages applied to the DBD cell, with voltage amplitudes lower than the one required for discharge breakdown, Scanning Electron Microscopy of silicon substrates placed on the bottom DBD electrode reveals significant deposition of TiO{sub 2} nanoparticles (NPs) close to the discharge entrance. On the other hand, at higher frequencies (HF), the number of TiO{sub 2} NPs deposited strongly decreases due to their “trapping” in the oscillating voltage and their transport along the gas flow lines. Based on these findings, a combined LF-HF voltage waveform is proposed and used to achieve significant and spatially uniform deposition of TiO{sub 2} NPs across the whole substrate surface. For higher voltage amplitudes, in the presence of hexamethyldisiloxane and nitrous oxide for plasma-enhanced chemical vapor deposition of inorganic layers, it is found that TiO{sub 2} NPs become fully embedded into a silica-like matrix. Similar Raman spectra are obtained for as-prepared TiO{sub 2} NPs and for nanocomposite TiO{sub 2}-SiO{sub 2} coating, suggesting that plasmamore » exposure does not significantly alter the crystalline structure of the TiO{sub 2} NPs injected into the discharge.« less

Authors:
 [1];  [2]; ;  [3]; ;  [1];  [4]
  1. LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France)
  2. (Canada)
  3. Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada)
  4. Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris (France)
Publication Date:
OSTI Identifier:
22597733
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 120; Journal Issue: 5; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AEROSOLS; ATMOSPHERIC PRESSURE; CHEMICAL VAPOR DEPOSITION; DIELECTRIC MATERIALS; ELECTRIC POTENTIAL; GAS FLOW; LAYERS; NANOCOMPOSITES; NANOPARTICLES; NITROUS OXIDE; ORGANIC SILICON COMPOUNDS; PLASMA; RAMAN SPECTRA; SCANNING ELECTRON MICROSCOPY; SILICA; SILICON; SILICON OXIDES; TITANIUM OXIDES; TOWNSEND DISCHARGE; WAVE FORMS

Citation Formats

Profili, J., Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7, Levasseur, O., Stafford, L., Naudé, N., Gherardi, N., E-mail: nicolas.gherardi@laplace.univ-tlse.fr, and Chaneac, C. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge. United States: N. p., 2016. Web. doi:10.1063/1.4959994.
Profili, J., Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7, Levasseur, O., Stafford, L., Naudé, N., Gherardi, N., E-mail: nicolas.gherardi@laplace.univ-tlse.fr, & Chaneac, C. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge. United States. doi:10.1063/1.4959994.
Profili, J., Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7, Levasseur, O., Stafford, L., Naudé, N., Gherardi, N., E-mail: nicolas.gherardi@laplace.univ-tlse.fr, and Chaneac, C. Sun . "Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge". United States. doi:10.1063/1.4959994.
@article{osti_22597733,
title = {Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge},
author = {Profili, J. and Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 and Levasseur, O. and Stafford, L. and Naudé, N. and Gherardi, N., E-mail: nicolas.gherardi@laplace.univ-tlse.fr and Chaneac, C.},
abstractNote = {This work examines the growth dynamics of TiO{sub 2}-SiO{sub 2} nanocomposite coatings in plane-to-plane Dielectric Barrier Discharges (DBDs) at atmospheric pressure operated in a Townsend regime using nebulized TiO{sub 2} colloidal suspension in hexamethyldisiloxane as the growth precursors. For low-frequency (LF) sinusoidal voltages applied to the DBD cell, with voltage amplitudes lower than the one required for discharge breakdown, Scanning Electron Microscopy of silicon substrates placed on the bottom DBD electrode reveals significant deposition of TiO{sub 2} nanoparticles (NPs) close to the discharge entrance. On the other hand, at higher frequencies (HF), the number of TiO{sub 2} NPs deposited strongly decreases due to their “trapping” in the oscillating voltage and their transport along the gas flow lines. Based on these findings, a combined LF-HF voltage waveform is proposed and used to achieve significant and spatially uniform deposition of TiO{sub 2} NPs across the whole substrate surface. For higher voltage amplitudes, in the presence of hexamethyldisiloxane and nitrous oxide for plasma-enhanced chemical vapor deposition of inorganic layers, it is found that TiO{sub 2} NPs become fully embedded into a silica-like matrix. Similar Raman spectra are obtained for as-prepared TiO{sub 2} NPs and for nanocomposite TiO{sub 2}-SiO{sub 2} coating, suggesting that plasma exposure does not significantly alter the crystalline structure of the TiO{sub 2} NPs injected into the discharge.},
doi = {10.1063/1.4959994},
journal = {Journal of Applied Physics},
number = 5,
volume = 120,
place = {United States},
year = {Sun Aug 07 00:00:00 EDT 2016},
month = {Sun Aug 07 00:00:00 EDT 2016}
}