```
Jing, Naihuan, E-mail: jing@ncsu.edu, Yang, Min, and Zhao, Hui, E-mail: zhaohui@bjut.edu.cn.
```*Local unitary equivalence of quantum states and simultaneous orthogonal equivalence*. United States: N. p., 2016.
Web. doi:10.1063/1.4954230.

```
Jing, Naihuan, E-mail: jing@ncsu.edu, Yang, Min, & Zhao, Hui, E-mail: zhaohui@bjut.edu.cn.
```*Local unitary equivalence of quantum states and simultaneous orthogonal equivalence*. United States. doi:10.1063/1.4954230.

```
Jing, Naihuan, E-mail: jing@ncsu.edu, Yang, Min, and Zhao, Hui, E-mail: zhaohui@bjut.edu.cn. 2016.
"Local unitary equivalence of quantum states and simultaneous orthogonal equivalence". United States.
doi:10.1063/1.4954230.
```

```
@article{osti_22596847,
```

title = {Local unitary equivalence of quantum states and simultaneous orthogonal equivalence},

author = {Jing, Naihuan, E-mail: jing@ncsu.edu and Yang, Min and Zhao, Hui, E-mail: zhaohui@bjut.edu.cn},

abstractNote = {The correspondence between local unitary equivalence of bipartite quantum states and simultaneous orthogonal equivalence is thoroughly investigated and strengthened. It is proved that local unitary equivalence can be studied through simultaneous similarity under projective orthogonal transformations, and four parametrization independent algorithms are proposed to judge when two density matrices on ℂ{sup d{sub 1}} ⊗ ℂ{sup d{sub 2}} are locally unitary equivalent in connection with trace identities, Kronecker pencils, Albert determinants and Smith normal forms.},

doi = {10.1063/1.4954230},

journal = {Journal of Mathematical Physics},

number = 6,

volume = 57,

place = {United States},

year = 2016,

month = 6

}