skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO{sub 2} thin films grown by the atomic layer deposition technique

Abstract

Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO{sub 2} rutile films which are deposited on RuO{sub 2} by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz–100 kHz range, for ac electric fields up to 1 MV{sub rms}/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MV{sub rms}/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves themore » high-field dielectric behavior.« less

Authors:
 [1];  [2]; ; ; ;  [1];  [3]
  1. Microelectronics Technology Laboratory (LTM), Grenoble Alpes University (UGA) and National Center for Scientific Research - CNRS, Grenoble 38000 (France)
  2. (Tunisia)
  3. LMOP, El Manar University, Tunis 2092 (Tunisia)
Publication Date:
OSTI Identifier:
22596827
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 119; Journal Issue: 24; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM; CAPACITANCE; CRYSTALS; DEPOSITION; DIELECTRIC MATERIALS; DOPED MATERIALS; ELECTRIC FIELDS; LAYERS; OXYGEN; PERMITTIVITY; POLARIZABILITY; RUTHENIUM OXIDES; RUTILE; SPECTRA; THIN FILMS; TITANIUM OXIDES; VACANCIES

Citation Formats

Kassmi, M., LMOP, El Manar University, Tunis 2092, Pointet, J., Gonon, P., E-mail: patrice.gonon@cea.fr, Bsiesy, A., Vallée, C., and Jomni, F. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO{sub 2} thin films grown by the atomic layer deposition technique. United States: N. p., 2016. Web. doi:10.1063/1.4954314.
Kassmi, M., LMOP, El Manar University, Tunis 2092, Pointet, J., Gonon, P., E-mail: patrice.gonon@cea.fr, Bsiesy, A., Vallée, C., & Jomni, F. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO{sub 2} thin films grown by the atomic layer deposition technique. United States. doi:10.1063/1.4954314.
Kassmi, M., LMOP, El Manar University, Tunis 2092, Pointet, J., Gonon, P., E-mail: patrice.gonon@cea.fr, Bsiesy, A., Vallée, C., and Jomni, F. 2016. "Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO{sub 2} thin films grown by the atomic layer deposition technique". United States. doi:10.1063/1.4954314.
@article{osti_22596827,
title = {Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO{sub 2} thin films grown by the atomic layer deposition technique},
author = {Kassmi, M. and LMOP, El Manar University, Tunis 2092 and Pointet, J. and Gonon, P., E-mail: patrice.gonon@cea.fr and Bsiesy, A. and Vallée, C. and Jomni, F.},
abstractNote = {Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO{sub 2} rutile films which are deposited on RuO{sub 2} by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz–100 kHz range, for ac electric fields up to 1 MV{sub rms}/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MV{sub rms}/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.},
doi = {10.1063/1.4954314},
journal = {Journal of Applied Physics},
number = 24,
volume = 119,
place = {United States},
year = 2016,
month = 6
}
  • Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could notmore » be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.« less
  • Highlights: • Ti doped ZnO films were prepared on Corning XG glass substrate by ALD. • The electrical properties and optical properties were systematically investigated. • An optimized Ti doped ZnO films had low resistivity and excellent optical transmittance. - Abstract: Titanium doped zinc oxide (Ti doped ZnO) films were prepared by atomic layer deposition methods at a deposition temperature of 200 °C. The Ti content in Ti doped ZnO films was varied from 5.08 at.% to 15.02 at.%. X-ray diffraction results indicated that the crystallinity of the Ti doped ZnO films had degraded with increasing Ti content. Transmission electronmore » microscopy was used to investigate the microstructural evolution of the Ti doped ZnO films, showing that both the grain size and crystallinity reduced with increasing Ti content. The electrical resistivity of the Ti doped ZnO films showed a minimum value of 1.6 × 10{sup −3} Ω cm with the Ti content of 6.20 at.%. Furthermore, the Ti doped ZnO films exhibited excellent transmittance.« less
  • No abstract prepared.
  • Gallium oxide (Ga{sub 2}O{sub 3}) thin films were deposited on silicon (100) and sapphire (001) substrates using the plasma-enhanced atomic layer deposition (PEALD) technique with an alternating supply of reactant source, [(CH{sub 3}){sub 2}GaNH{sub 2}]{sub 3}, and oxygen plasma. The thin films were annealed at different temperatures (500, 700, and 900 deg. C, respectively) in a rapid thermal annealing system for 1 min. It was found that Ga{sub 2}O{sub 3} thin films deposited by PEALD showed excellent step coverage characteristics. X-ray diffraction measurements showed that the as-deposited thin film was amorphous. However, the thin films annealed at temperatures higher thanmore » 700 deg. C showed a (400) orientation of the monoclinic structure. An atomic force microscope was used to investigate the surface morphologies of the thin films. The thin films showed very smooth surfaces; the roughness of the as-deposited thin film was about 4 A . With increasing annealing temperature, the thin film became rougher compared with that annealed at lower temperatures. A double-beam spectrophotometer was used to measure the transmittances of the thin films on the sapphire substrates. The thin films showed a very high transmittance (nearly 100%). The band-gap energies of the thin films were determined by a linear fit of the transmittance spectra and were calculated to be between 5.0 and 5.24 eV. The electrical properties of thin films of Pt/film/Si structure were also investigated. It was found that, with increasing annealing temperature, the insulating characteristics of the Ga{sub 2}O{sub 3} thin films were significantly improved. Spectroscopic ellipsometry was used to derive the refractive indices and the thicknesses of the thin films. The refractive indices of the thin films showed normal dispersion behavior. The refractive indices of the thin films annealed at low temperatures were smaller than those annealed at high temperatures.« less
  • Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO{sub 2}/Al{sub 2}O{sub 3} films at 110 deg. C and 280 deg. C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the filmsmore » deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100 mm {Phi} samples, and the transmission is more than 99.8% at 1064 nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO{sub 2}/Al{sub 2}O{sub 3} films, the LIDTs were 6.73{+-}0.47 J/cm{sup 2} and 6.5{+-}0.46 J/cm{sup 2} at 110 deg. C on fused silica and BK7 substrates, respectively. The LIDTs at 110 deg. C are notably better than 280 deg. C.« less