skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

Abstract

Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

Authors:
;  [1]; ; ;  [2]
  1. School of Mathematical and Physical Sciences and Institute of Nanoscale Technology, University of Technology Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia)
  2. Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences and School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072 (Australia)
Publication Date:
OSTI Identifier:
22596679
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 119; Journal Issue: 24; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALUMINIUM OXIDES; ANODES; BUFFERS; COLOR; COMPUTERIZED SIMULATION; EMISSION SPECTRA; INDIUM; INDIUM OXIDES; LAYERS; LIGHT EMITTING DIODES; SILVER; TIN OXIDES; ZINC; ZINC OXIDES

Citation Formats

Gentle, A. R., E-mail: angus.gentle@uts.edu.au, Smith, G. B., Yambem, S. D., Burn, P. L., and Meredith, P. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes. United States: N. p., 2016. Web. doi:10.1063/1.4954689.
Gentle, A. R., E-mail: angus.gentle@uts.edu.au, Smith, G. B., Yambem, S. D., Burn, P. L., & Meredith, P. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes. United States. doi:10.1063/1.4954689.
Gentle, A. R., E-mail: angus.gentle@uts.edu.au, Smith, G. B., Yambem, S. D., Burn, P. L., and Meredith, P. 2016. "AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes". United States. doi:10.1063/1.4954689.
@article{osti_22596679,
title = {AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes},
author = {Gentle, A. R., E-mail: angus.gentle@uts.edu.au and Smith, G. B. and Yambem, S. D. and Burn, P. L. and Meredith, P.},
abstractNote = {Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.},
doi = {10.1063/1.4954689},
journal = {Journal of Applied Physics},
number = 24,
volume = 119,
place = {United States},
year = 2016,
month = 6
}
  • High efficiency/high luminance small-molecule organic light-emitting diodes (OLEDs) are fabricated by combining thin, covalently bound triarylamine hole injection/adhesion interlayers with hole- and exciton-blocking/electron transport interlayers in tris(8-hydroxyquinolato)aluminum(III) (Alq) and tetrakis(2-methyl-8-hydroxyquinolinato)borate (BQ{sub 4}{sup -})-based OLEDs. Green-emitting OLEDs with maximum luminance {approx}85 000 cd/m{sup 2}, power and forward external quantum efficiencies as high as 15.2 lm/W and 4.4{+-}0.5%, respectively, and turn-on voltages {approx}4.5 V are achieved in devices of the structure, ITO/N,N(prime)-diphenyl-N,N(prime)-bis(p-trichlorosilylpropylphenyl)(1,1(prime)-biphenyl)-4,4(prime)-diamine (TPD-Si2)/1,4-bis(1-naphthylphenylamino)biphenyl (NPB)/Alq doped with N,N(prime)-di(3-heptyl)quinacridone (DIQA)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/Li/AgMg. Also, bright and efficient blue-emitting OLEDs with turn-on voltages {approx}5.0 V, maximum luminance {approx}30 000 cd/m2, and {approx}5.0 lm/W and 1.6{+-}0.2% power andmore » external forward quantum efficiencies, respectively, are achieved in devices of the structure, ITO/TPD-Si2/NPB/BQ{sub 4}{sup -}/BCP/Li/Al. TPD-Si2 interlayers are fabricated by spin casting N,N(prime)-diphenyl-N,N(prime)-bis(p-trichlorosilylpropylphenyl)(1,1(prime)-biphenyl)-4,4(prime)-diamine onto the ITO surface, while BCP interlayers are introduced by thermal evaporation. The excellent OLED performance is attributed to the differing functions of the above two interlayers: (1) The TPD-Si2 layer has a direct impact on hole injection by reducing the injection barrier and improving interfacial cohesion, and an indirect but strong effect on electron injection by altering internal electric fields. (2) The BCP layer, doped with lithium, directly reduces the electron injection barrier. Incorporation of both interlayers in OLED structures affords synergistically enhanced hole/electron injection and recombination efficiency. The results demonstrate a strategy to enhance OLED performance and an alternative strategy to increase electron density in electron-limited devices.« less
  • As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m{sup 2}. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltagemore » regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.« less
  • The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due tomore » anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.« less
  • We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less