skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detection of atomic force microscopy cantilever displacement with a transmitted electron beam

Abstract

The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

Authors:
; ; ;  [1]
  1. Material Measurement Lab, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)
Publication Date:
OSTI Identifier:
22594382
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 109; Journal Issue: 4; Other Information: (c) 2016 U.S. Government; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; AMPLITUDES; ATOMIC FORCE MICROSCOPY; DETECTION; ELECTRON BEAMS; ELECTRONS; FLUCTUATIONS; OSCILLATIONS; THICKNESS

Citation Formats

Wagner, R., Woehl, T. J., Keller, R. R., and Killgore, J. P. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam. United States: N. p., 2016. Web. doi:10.1063/1.4960192.
Wagner, R., Woehl, T. J., Keller, R. R., & Killgore, J. P. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam. United States. doi:10.1063/1.4960192.
Wagner, R., Woehl, T. J., Keller, R. R., and Killgore, J. P. 2016. "Detection of atomic force microscopy cantilever displacement with a transmitted electron beam". United States. doi:10.1063/1.4960192.
@article{osti_22594382,
title = {Detection of atomic force microscopy cantilever displacement with a transmitted electron beam},
author = {Wagner, R. and Woehl, T. J. and Keller, R. R. and Killgore, J. P.},
abstractNote = {The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.},
doi = {10.1063/1.4960192},
journal = {Applied Physics Letters},
number = 4,
volume = 109,
place = {United States},
year = 2016,
month = 7
}
  • An accurate experimental method is proposed for on-spot calibration of the measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy. One of the key techniques devised for this method is a reliable contact detection mechanism that detects the tip-surface contact instantly. At the contact instant, the oscillation amplitude of the tip deflection, converted to that of the deflection signal in laser reading through the measurement sensitivity, exactly equals to the distance between the sample surface and the cantilever base position. Therefore, the proposed method utilizes the recorded oscillation amplitude of the deflection signal and the base position ofmore » the cantilever at the contact instant for the measurement sensitivity calibration. Experimental apparatus along with various signal processing and control modules was realized to enable automatic and rapid acquisition of multiple sets of data, with which the calibration of a single dynamic mode could be completed in less than 1 s to suppress the effect of thermal drift and measurement noise. Calibration of the measurement sensitivities of the first and second dynamic modes of three micro-cantilevers having distinct geometries was successfully demonstrated. The dependence of the measurement sensitivity on laser spot location was also experimentally investigated. Finally, an experiment was performed to validate the calibrated measurement sensitivity of the second dynamic mode of a micro-cantilever.« less
  • High-speed atomic force microscopy has attracted much attention due to its unique capability of visualizing nanoscale dynamic processes at a solid/liquid interface. However, its usability and resolution have yet to be improved. As one of the solutions for this issue, here we present a design of a high-speed Z-tip scanner with screw holding mechanism. We perform detailed comparison between designs with different actuator size and screw arrangement by finite element analysis. Based on the design giving the best performance, we have developed a Z tip scanner and measured its performance. The measured frequency response of the scanner shows a flatmore » response up to ∼10 kHz. This high frequency response allows us to achieve wideband tip-sample distance regulation. We demonstrate the applicability of the scanner to high-speed atomic-resolution imaging by visualizing atomic-scale calcite crystal dissolution process in water at 2 s/frame.« less
  • Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.
  • We have developed a low noise cantilever deflection sensor with a deflection noise density of 17 fm/{radical}(Hz) by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed inmore » both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.« less
  • We have applied photothermal bending of a cantilever induced by an intensity-modulated infrared laser to control the tip-surface distance in atomic force microscopy. The slow response of the photothermal expansion effect is eliminated by inverse transfer function compensation. By regulating the laser power and regulating the cantilever deflection, the tip-sample distance is controlled; this enables much faster imaging than that in the conventional piezoactuator-based z scanners because of the considerably higher resonant frequency of small cantilevers. Using this control together with other devices optimized for high-speed scanning, video-rate imaging of protein molecules in liquids is achieved.