skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spatial atomic layer deposition of ZnO/TiO{sub 2} nanolaminates

Abstract

Spatial atomic layer deposition (S-ALD) is a potential high-throughput manufacturing technique offering fast and large scale ultrathin films deposition. Here, an S-ALD system with modular injectors is introduced for fabricating binary oxides and their nanolaminates. By optimizing the deposition conditions, both ZnO and TiO{sub 2} films demonstrate linear growth and desired surface morphology. The as-deposited ZnO film has high carrier mobility, and the TiO{sub 2} film shows suitable optical transmittance and band gap. The ZnO/TiO{sub 2} nanolaminates are fabricated by alternating substrate movement between each S-ALD modular units of ZnO and TiO{sub 2}. The grazing incidence x-ray diffraction spectra of nanolaminates demonstrating the signature peaks are weaker for the same thickness nanolaminates with more bilayers, suggesting tuning nanolaminates from crystalline to amorphous. Optical transmittances of ZnO/TiO{sub 2} laminates are enhanced with the increase of the bilayers' number in the visible range. Refractive indices of nanolaminates increase with the thickness of each bilayer decreasing, which demonstrates the feasibility of obtaining desired refractive indices by controlling the bilayer number. The electronic properties, including mobility, carrier concentration, and conductivity, are also tunable with different bilayers.

Authors:
; ; ; ; ;  [1];  [2]
  1. State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
  2. State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
Publication Date:
OSTI Identifier:
22592864
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 34; Journal Issue: 5; Other Information: (c) 2016 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; CARRIER MOBILITY; CARRIERS; CONCENTRATION RATIO; DEPOSITION; GRAZING; LAYERS; MANUFACTURING; MORPHOLOGY; OPTIMIZATION; REFRACTIVE INDEX; SUBSTRATES; SURFACES; THICKNESS; THIN FILMS; TITANIUM OXIDES; TUNING; X-RAY DIFFRACTION; ZINC OXIDES

Citation Formats

Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, Lin, Ji-Long, He, Wen-Jie, Duan, Chen-Long, Peng, Qi, Wang, Xiao-Lei, and Shan, Bin. Spatial atomic layer deposition of ZnO/TiO{sub 2} nanolaminates. United States: N. p., 2016. Web. doi:10.1116/1.4955289.
Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, Lin, Ji-Long, He, Wen-Jie, Duan, Chen-Long, Peng, Qi, Wang, Xiao-Lei, & Shan, Bin. Spatial atomic layer deposition of ZnO/TiO{sub 2} nanolaminates. United States. doi:10.1116/1.4955289.
Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, Lin, Ji-Long, He, Wen-Jie, Duan, Chen-Long, Peng, Qi, Wang, Xiao-Lei, and Shan, Bin. Thu . "Spatial atomic layer deposition of ZnO/TiO{sub 2} nanolaminates". United States. doi:10.1116/1.4955289.
@article{osti_22592864,
title = {Spatial atomic layer deposition of ZnO/TiO{sub 2} nanolaminates},
author = {Chen, Rong, E-mail: rongchen@mail.hust.edu.cn and Lin, Ji-Long and He, Wen-Jie and Duan, Chen-Long and Peng, Qi and Wang, Xiao-Lei and Shan, Bin},
abstractNote = {Spatial atomic layer deposition (S-ALD) is a potential high-throughput manufacturing technique offering fast and large scale ultrathin films deposition. Here, an S-ALD system with modular injectors is introduced for fabricating binary oxides and their nanolaminates. By optimizing the deposition conditions, both ZnO and TiO{sub 2} films demonstrate linear growth and desired surface morphology. The as-deposited ZnO film has high carrier mobility, and the TiO{sub 2} film shows suitable optical transmittance and band gap. The ZnO/TiO{sub 2} nanolaminates are fabricated by alternating substrate movement between each S-ALD modular units of ZnO and TiO{sub 2}. The grazing incidence x-ray diffraction spectra of nanolaminates demonstrating the signature peaks are weaker for the same thickness nanolaminates with more bilayers, suggesting tuning nanolaminates from crystalline to amorphous. Optical transmittances of ZnO/TiO{sub 2} laminates are enhanced with the increase of the bilayers' number in the visible range. Refractive indices of nanolaminates increase with the thickness of each bilayer decreasing, which demonstrates the feasibility of obtaining desired refractive indices by controlling the bilayer number. The electronic properties, including mobility, carrier concentration, and conductivity, are also tunable with different bilayers.},
doi = {10.1116/1.4955289},
journal = {Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films},
number = 5,
volume = 34,
place = {United States},
year = {Thu Sep 15 00:00:00 EDT 2016},
month = {Thu Sep 15 00:00:00 EDT 2016}
}
  • Nanolaminates consisting of Al{sub 2}O{sub 3} and TiO{sub 2} oxide sublayers were synthesized by using atomic layer deposition to produce individual layers with atomic scale thickness control. The sublayer thicknesses were kept constant for each multilayer structure, and were changed from 50 to 0.2 nm for a series of different samples. Giant dielectric constant ({approx}1000) was observed when the sublayer thickness is less than 0.5 nm, which is significantly larger than that of Al{sub 2}O{sub 3} and TiO{sub 2} dielectrics. Detailed investigation revealed that the observed giant dielectric constant is originated from the Maxwell-Wagner type dielectric relaxation.
  • Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the poresmore » of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S-ALD process could be extended to roll-to-roll operation for the commercialization of S-ALD for coating Li ion battery electrodes.« less
  • Titanium dioxide films were grown by atomic layer deposition (ALD) using titanium tetraisopropoxide as a titanium precursor and water, ozone, or oxygen plasma as coreactants. Low temperatures (80–120 °C) were used to grow moisture barrier TiO{sub 2} films on polyethylene naphthalate. The maximum growth per cycle for water, ozone, and oxygen plasma processes were 0.33, 0.12, and 0.56 Å/cycle, respectively. X-ray photoelectron spectrometry was used to evaluate the chemical composition of the layers and the origin of the carbon contamination was studied by deconvoluting carbon C1s peaks. In plasma-assisted ALD, the film properties were dependent on the energy dose supplied by themore » plasma. TiO{sub 2} films were also successfully deposited by using a spatial ALD (SALD) system based on the results from the temporal ALD. Similar properties were measured compared to the temporal ALD deposited TiO{sub 2}, but the deposition time could be reduced using SALD. The TiO{sub 2} films deposited by plasma-assisted ALD showed better moisture barrier properties than the layers deposited by thermal processes. Water vapor transmission rate values lower than 5 × 10{sup −4} g day{sup −1} m{sup −2} (38 °C and 90% RH) was measured for 20 nm of TiO{sub 2} film deposited by plasma-assisted ALD.« less
  • In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O{sub 2} and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity wasmore » measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ∼ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality with long term reliability of ZnO based transparent conducting oxides.« less