skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Near interface traps in SiO{sub 2}/4H-SiC metal-oxide-semiconductor field effect transistors monitored by temperature dependent gate current transient measurements

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4955465· OSTI ID:22590578
; ; ;  [1]
  1. Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, Zona Industriale 95121 Catania (Italy)

This letter reports on the impact of gate oxide trapping states on the conduction mechanisms in SiO{sub 2}/4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs). The phenomena were studied by gate current transient measurements, performed on n-channel MOSFETs operated in “gate-controlled-diode” configuration. The measurements revealed an anomalous non-steady conduction under negative bias (V{sub G} > |20 V|) through the SiO{sub 2}/4H-SiC interface. The phenomenon was explained by the coexistence of a electron variable range hopping and a hole Fowler-Nordheim (FN) tunnelling. A semi-empirical modified FN model with a time-depended electric field is used to estimate the near interface traps in the gate oxide (N{sub trap} ∼ 2 × 10{sup 11} cm{sup −2}).

OSTI ID:
22590578
Journal Information:
Applied Physics Letters, Vol. 109, Issue 1; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English