skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of nickel doping on oxygen-ionic conductivity of the n = 1 Ruddlesden-Popper Phases La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} (δ = 0.0905)

Abstract

The results of the synthesis and characterization of the optimally doped La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4-δ} solid solution with x = 0, 0.1, 0.2 and 0.3 are reported. The versatility of these La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} materials is explained on the basis of structural features and the ability to accommodate oxygen nonstoichiometry. According to powder X-ray and neutron diffraction data, La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} adopts the tetragonal structure with oxygen vacancies occurring preferentially at the O{sub ap} sites within the {(La/Ca)O} layers of the perovskite blocks and the oxygen deviation from stoichiometry δ was found to be δ=0.0905(6). The bulk conductivity indicated an Arrhenius-type thermally activated process and oxygen vacancies are the possible ionic charge carriers at T=270 °C. An increase of the conductivity was detected when Ni was introduced. With nickel ratio variation, a strong correlation was observed between the Cu(Ni)-O{sub ap} apical bond length variation and the conductivity variation through controlling the O{sup 2−} ion migration. - Highlights: • We report the synthesis and structure of the La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} (0≤x≤0.3; δ=0.0905) compounds. • La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} (x=0.0, 0.2, 0.3) doped with Ni{sup 2+} have a highermore » conductivity than undoped La{sub 1.85}Ca{sub 0.15}CuO{sub 4−δ}. • At T=270 °C, sample x=0.3 has the highest conductivity (0.2915 sm{sup −1}).« less

Authors:
 [1];  [2];  [1];  [3];  [4];  [5]; ;  [6];
  1. Useful Materials Valorization Laboratory, National Centre of Research in Materials Science, Technologic Park of Borj Cedria, B.P. 73, 8027 Soliman (Tunisia)
  2. (Tunisia)
  3. (UR11ES85), Faculté des Sciences de Gabès/Université de Gabès, Campus Universitaire Cité Erriadh, Gabès 6072 (Tunisia)
  4. Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, CNRSM, Technopole de Borj Cedria, B.P. 95, Hammam-Lif 2050 (Tunisia)
  5. Laboratoire de Cristallographie, CNRS, 25 Avenue des Martyrs, BP 166, 3804 Grenoble Cedex 9 (France)
  6. Institut de Chimie Moléculaire et des Matériaux – UMR 5253 – ICG C2M: Chimie et Cristallochimie des Matériaux, Université de Montpellier 2, Case courrier 01504 Place Eugène Bataillon, Bat 15, F-34095 Montpellier cedex 5 (France)
Publication Date:
OSTI Identifier:
22584184
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 240; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BOND LENGTHS; CHARGE CARRIERS; DOPED MATERIALS; IONIC CONDUCTIVITY; LAYERS; MIGRATION; NEUTRON DIFFRACTION; NICKEL IONS; OXIDES; OXYGEN; PEROVSKITE; POWDERS; SOLID OXIDE FUEL CELLS; SOLID SOLUTIONS; SOLIDS; SYNTHESIS; X RADIATION; X-RAY DIFFRACTION

Citation Formats

Midouni, Adnene, Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. No 94- Rommana, 1068 Tunis, Houchati, Mohamed Ikbal, E-mail: ikb_med@yahoo.fr, Unité de Recherche Catalyse et Matériaux pour l’Environnement et les Procédés URCMEP, Othman, Walid Belhaj, Chniba-Boudjada, Nassira, Ceretti, Monica, Paulus, Werner, and and others. Influence of nickel doping on oxygen-ionic conductivity of the n = 1 Ruddlesden-Popper Phases La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} (δ = 0.0905). United States: N. p., 2016. Web. doi:10.1016/J.JSSC.2016.05.017.
Midouni, Adnene, Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. No 94- Rommana, 1068 Tunis, Houchati, Mohamed Ikbal, E-mail: ikb_med@yahoo.fr, Unité de Recherche Catalyse et Matériaux pour l’Environnement et les Procédés URCMEP, Othman, Walid Belhaj, Chniba-Boudjada, Nassira, Ceretti, Monica, Paulus, Werner, & and others. Influence of nickel doping on oxygen-ionic conductivity of the n = 1 Ruddlesden-Popper Phases La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} (δ = 0.0905). United States. doi:10.1016/J.JSSC.2016.05.017.
Midouni, Adnene, Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. No 94- Rommana, 1068 Tunis, Houchati, Mohamed Ikbal, E-mail: ikb_med@yahoo.fr, Unité de Recherche Catalyse et Matériaux pour l’Environnement et les Procédés URCMEP, Othman, Walid Belhaj, Chniba-Boudjada, Nassira, Ceretti, Monica, Paulus, Werner, and and others. Mon . "Influence of nickel doping on oxygen-ionic conductivity of the n = 1 Ruddlesden-Popper Phases La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} (δ = 0.0905)". United States. doi:10.1016/J.JSSC.2016.05.017.
@article{osti_22584184,
title = {Influence of nickel doping on oxygen-ionic conductivity of the n = 1 Ruddlesden-Popper Phases La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} (δ = 0.0905)},
author = {Midouni, Adnene and Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. No 94- Rommana, 1068 Tunis and Houchati, Mohamed Ikbal, E-mail: ikb_med@yahoo.fr and Unité de Recherche Catalyse et Matériaux pour l’Environnement et les Procédés URCMEP and Othman, Walid Belhaj and Chniba-Boudjada, Nassira and Ceretti, Monica and Paulus, Werner and and others},
abstractNote = {The results of the synthesis and characterization of the optimally doped La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4-δ} solid solution with x = 0, 0.1, 0.2 and 0.3 are reported. The versatility of these La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} materials is explained on the basis of structural features and the ability to accommodate oxygen nonstoichiometry. According to powder X-ray and neutron diffraction data, La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} adopts the tetragonal structure with oxygen vacancies occurring preferentially at the O{sub ap} sites within the {(La/Ca)O} layers of the perovskite blocks and the oxygen deviation from stoichiometry δ was found to be δ=0.0905(6). The bulk conductivity indicated an Arrhenius-type thermally activated process and oxygen vacancies are the possible ionic charge carriers at T=270 °C. An increase of the conductivity was detected when Ni was introduced. With nickel ratio variation, a strong correlation was observed between the Cu(Ni)-O{sub ap} apical bond length variation and the conductivity variation through controlling the O{sup 2−} ion migration. - Highlights: • We report the synthesis and structure of the La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} (0≤x≤0.3; δ=0.0905) compounds. • La{sub 1.85}Ca{sub 0.15}(Cu{sub 1−x}Ni{sub x})O{sub 4−δ} (x=0.0, 0.2, 0.3) doped with Ni{sup 2+} have a higher conductivity than undoped La{sub 1.85}Ca{sub 0.15}CuO{sub 4−δ}. • At T=270 °C, sample x=0.3 has the highest conductivity (0.2915 sm{sup −1}).},
doi = {10.1016/J.JSSC.2016.05.017},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 240,
place = {United States},
year = {Mon Aug 15 00:00:00 EDT 2016},
month = {Mon Aug 15 00:00:00 EDT 2016}
}