skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

Abstract

Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H_2O}{sub n} (1), {[Zn(bib)(atbip)]·H_2O}{sub n} (2), {[Zn(bib)(2,2′-tda)]}{sub n} (3) and {[Zn(bib)(5-tbipa)]·EtOH}{sub n} (4), (H{sub 2}atibdc=5-amino-2,4,6-triiodoisophthalic acid, H{sub 2}atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2′-H{sub 2}tad=2,2′-thiodiacetic acid, 5-H{sub 2}tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1–4. The fluorescent properties of complexes 1−4 were studied. In addition, the thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1–4 are calculated by the integral Kissinger's method and Ozawa–Doyle's method. The activation energy E (E{sub 1}=209.658 kJ·mol{sup −1}, E{sub 2}=250.037 kJ mol{sup −1}, E{sub 3}=225.300 kJ mol{sup −1}, E{sub 4}=186.529 kJ·mol{sup −1}) demonstrates that the reaction rate ofmore » the melting decomposition is slow. The thermodynamic parameters (ΔH{sup ‡}, ΔG{sup ‡} and ΔS{sup ‡}) at the peak temperatures of the DTG curves were also calculated. ΔG{sup ‡}>0 indicates that the skeleton collapse is not spontaneous. ΔH{sub d}>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The structural stability could be illustrated from the point of thermodynamics and kinetics. - Graphical abstract: Four new zinc coordination architectures constructed from the primary ligand bib, transition metal ions Zn(II) and four V-shaped carboxylate coligands. The different structural evolutions of complexes 1–4 have systematically illustrated that the carboxylate coligands play a critical role in the assemblies of the CPs. Their thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1−4 are calculated by the integral Kissinger’s method and Ozawa–Doyle’s method. The structural stability could be illustrated from the point of thermodynamics and kinetics. Display Omitted.« less

Authors:
 [1];  [1]; ;  [1];  [2];  [1]
  1. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China)
  2. Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000 (China)
Publication Date:
OSTI Identifier:
22584151
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 239; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACTIVATION ENERGY; BUTANE; CALORIMETRY; CHIRALITY; CRYSTAL STRUCTURE; CRYSTALS; FLUORESCENCE; LIGANDS; POLYMERS; PYROLYSIS; REACTION KINETICS; SKELETON; STABILITY; THERMODYNAMICS; TRANSITION ELEMENTS

Citation Formats

He, Tian, Yue, Ke-Fen, E-mail: ykflyy@nwu.edu.cn, Zhao, Yi-xing, Chen, San-Ping, Zhou, Chun-sheng, E-mail: slzhoucs@126.com.cn, and Yan, Ni. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains. United States: N. p., 2016. Web. doi:10.1016/J.JSSC.2016.04.022.
He, Tian, Yue, Ke-Fen, E-mail: ykflyy@nwu.edu.cn, Zhao, Yi-xing, Chen, San-Ping, Zhou, Chun-sheng, E-mail: slzhoucs@126.com.cn, & Yan, Ni. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains. United States. doi:10.1016/J.JSSC.2016.04.022.
He, Tian, Yue, Ke-Fen, E-mail: ykflyy@nwu.edu.cn, Zhao, Yi-xing, Chen, San-Ping, Zhou, Chun-sheng, E-mail: slzhoucs@126.com.cn, and Yan, Ni. Fri . "Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains". United States. doi:10.1016/J.JSSC.2016.04.022.
@article{osti_22584151,
title = {Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains},
author = {He, Tian and Yue, Ke-Fen, E-mail: ykflyy@nwu.edu.cn and Zhao, Yi-xing and Chen, San-Ping and Zhou, Chun-sheng, E-mail: slzhoucs@126.com.cn and Yan, Ni},
abstractNote = {Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H_2O}{sub n} (1), {[Zn(bib)(atbip)]·H_2O}{sub n} (2), {[Zn(bib)(2,2′-tda)]}{sub n} (3) and {[Zn(bib)(5-tbipa)]·EtOH}{sub n} (4), (H{sub 2}atibdc=5-amino-2,4,6-triiodoisophthalic acid, H{sub 2}atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2′-H{sub 2}tad=2,2′-thiodiacetic acid, 5-H{sub 2}tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1–4. The fluorescent properties of complexes 1−4 were studied. In addition, the thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1–4 are calculated by the integral Kissinger's method and Ozawa–Doyle's method. The activation energy E (E{sub 1}=209.658 kJ·mol{sup −1}, E{sub 2}=250.037 kJ mol{sup −1}, E{sub 3}=225.300 kJ mol{sup −1}, E{sub 4}=186.529 kJ·mol{sup −1}) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH{sup ‡}, ΔG{sup ‡} and ΔS{sup ‡}) at the peak temperatures of the DTG curves were also calculated. ΔG{sup ‡}>0 indicates that the skeleton collapse is not spontaneous. ΔH{sub d}>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The structural stability could be illustrated from the point of thermodynamics and kinetics. - Graphical abstract: Four new zinc coordination architectures constructed from the primary ligand bib, transition metal ions Zn(II) and four V-shaped carboxylate coligands. The different structural evolutions of complexes 1–4 have systematically illustrated that the carboxylate coligands play a critical role in the assemblies of the CPs. Their thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1−4 are calculated by the integral Kissinger’s method and Ozawa–Doyle’s method. The structural stability could be illustrated from the point of thermodynamics and kinetics. Display Omitted.},
doi = {10.1016/J.JSSC.2016.04.022},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 239,
place = {United States},
year = {Fri Jul 15 00:00:00 EDT 2016},
month = {Fri Jul 15 00:00:00 EDT 2016}
}