skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flux growth and magnetic properties of rare earth cobalt germanide, RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr, Nd; x≈0.8)

Abstract

The intermetallic compounds RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were synthesized from the reaction of germanium and aluminum in RE/Co eutectic flux. These phases crystallize with the Nd{sub 6}Co{sub 5}Ge{sub 2.2} structure type in hexagonal space group P-6m2 (a=9.203(2)Å, c=4.202(1) Å, R{sub 1}=0.0109 for Pr{sub 6}Co{sub 5}Ge{sub 1.80}Al{sub 2.20}; and a=9.170(3) Å, c=4.195(1) Å, R{sub 1}=0.0129 for Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26}). The structure features chains of face-sharing Ge@RE{sub 9} clusters intersecting hexagonal cobalt nets linked by aluminum atoms. Magnetic susceptibility measurements indicate that both phases exhibit ferromagnetic ordering of the cobalt layers with T{sub C} in the range of 130–140 K. The magnetic moments of the rare earth ions order at lower temperature (30–40 K). Magnetic measurements on oriented crystals of Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26} show a strong preference of the moments to order along the c-axis. - Graphical abstract: RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were grown as large crystals from reactions of Ge and Al in RE/Co eutectic melts. Magnetic measurements indicate ordering of the 2-D cobalt nets at 130–140 K, and ordering of the rare earth moments at 30–40 K. Display Omitted - Highlights: • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{submore » ,} Nd) grown as large crystals from RE/Co eutectic flux. • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} structure features hexagonal cobalt nets stacked along c-axis. • Cobalt layers order ferromagnetically with T{sub c}=130–140 K. • Rare earth magnetic moments order at low temperature (30–40 K).« less

Authors:
;
Publication Date:
OSTI Identifier:
22584119
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 238; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ALUMINIUM; ANISOTROPY; COBALT; CRYSTAL GROWTH; CRYSTALS; EUTECTICS; GERMANIDES; GERMANIUM; INTERMETALLIC COMPOUNDS; MAGNETIC MOMENTS; MAGNETIC SUSCEPTIBILITY; RARE EARTHS; SPACE GROUPS

Citation Formats

Zhou, Sixuan, and Latturner, Susan E., E-mail: latturner@chem.fsu.edu. Flux growth and magnetic properties of rare earth cobalt germanide, RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr, Nd; x≈0.8). United States: N. p., 2016. Web. doi:10.1016/J.JSSC.2016.03.024.
Zhou, Sixuan, & Latturner, Susan E., E-mail: latturner@chem.fsu.edu. Flux growth and magnetic properties of rare earth cobalt germanide, RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr, Nd; x≈0.8). United States. doi:10.1016/J.JSSC.2016.03.024.
Zhou, Sixuan, and Latturner, Susan E., E-mail: latturner@chem.fsu.edu. 2016. "Flux growth and magnetic properties of rare earth cobalt germanide, RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr, Nd; x≈0.8)". United States. doi:10.1016/J.JSSC.2016.03.024.
@article{osti_22584119,
title = {Flux growth and magnetic properties of rare earth cobalt germanide, RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr, Nd; x≈0.8)},
author = {Zhou, Sixuan and Latturner, Susan E., E-mail: latturner@chem.fsu.edu},
abstractNote = {The intermetallic compounds RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were synthesized from the reaction of germanium and aluminum in RE/Co eutectic flux. These phases crystallize with the Nd{sub 6}Co{sub 5}Ge{sub 2.2} structure type in hexagonal space group P-6m2 (a=9.203(2)Å, c=4.202(1) Å, R{sub 1}=0.0109 for Pr{sub 6}Co{sub 5}Ge{sub 1.80}Al{sub 2.20}; and a=9.170(3) Å, c=4.195(1) Å, R{sub 1}=0.0129 for Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26}). The structure features chains of face-sharing Ge@RE{sub 9} clusters intersecting hexagonal cobalt nets linked by aluminum atoms. Magnetic susceptibility measurements indicate that both phases exhibit ferromagnetic ordering of the cobalt layers with T{sub C} in the range of 130–140 K. The magnetic moments of the rare earth ions order at lower temperature (30–40 K). Magnetic measurements on oriented crystals of Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26} show a strong preference of the moments to order along the c-axis. - Graphical abstract: RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were grown as large crystals from reactions of Ge and Al in RE/Co eutectic melts. Magnetic measurements indicate ordering of the 2-D cobalt nets at 130–140 K, and ordering of the rare earth moments at 30–40 K. Display Omitted - Highlights: • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) grown as large crystals from RE/Co eutectic flux. • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} structure features hexagonal cobalt nets stacked along c-axis. • Cobalt layers order ferromagnetically with T{sub c}=130–140 K. • Rare earth magnetic moments order at low temperature (30–40 K).},
doi = {10.1016/J.JSSC.2016.03.024},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 238,
place = {United States},
year = 2016,
month = 6
}
  • From amorphous thin films from alloys of rare earths (Gd, Sm), yttrium or zirconium with cobalt we have prepared trilayers with very clean interfaces appropriate for the study of magnetic coupling. The sandwiches were typically Y-Co/Gd-Co/Y-Co and Sm-Co/X/Sm-Co{sup {prime}} (X=Gd-Co, Co-Zr, Co). The three individual layers are coupled magnetically by exchange interactions between cobalt moments throughout the entire sample. This coupling associated with the specific properties of the given alloy (magnetic moment, anisotropy, coercivity) leads to ferrimagnetic or ferromagnetic structures of the magnetization of adjacent layers and to novel magnetization processes. For systems consisting of magnetically hard external layers withmore » different coercivities and a soft central layer (Sm-Co/X/Sm-Co{sup {prime}}, X=Gd-Co, Co-Zr), the influence of the central layer{close_quote}s thickness and type of the material on coupling and magnetization processes have been studied quantitatively. Numerical simulations using a one-dimensional model for describing the magnetization processes observed in sandwich systems fit the magnetization curves of these model systems particularly well. {copyright} {ital 1997} {ital The American Physical Society}« less
  • Four rare-earth cobalt arsenides, RCo2As2 (R = La, Ce, Pr, Nd), were obtained by reactions of constituent elements in molten Bi. The use of Bi flux also allowed the growth of representative single crystals. All compounds are isostructural and belong to the ThCr2Si2 structure type (space group I4/mmm). The formation of Co vacancies is observed in all structures, while the structures of La- and Ce-containing compounds also show incorporation of minor Bi defects next to the R crystallographic site. Correspondingly, the general formula of these materials can be written as R1 xBixCo2 As2, with x/ = 0.03/0.1, 0.05/0.15, 0/0.2, andmore » 0/0.3 for R = La, Ce, Pr, and Nd, respectively. All compounds exhibit high-temperature ferromagnetic ordering of Co magnetic moments in the range of 150-200 K. Electronic band structure calculations revealed a high peak in the density of states at the Fermi level, thus supporting the itinerant nature of magnetism in the Co sublattice. The magnetic ordering in the lanthanide sublattice takes place at lower temperatures, with the R moments aligning antiparallel to the Co moments to give a ferrimagnetic ground state. The measurements on oriented single crystals demonstrated significant magnetic anisotropy in the ferrimagnetic state, with the preferred moment alignment along the c axis of the tetragonal lattice. Neutron powder diffraction failed to reveal the structure of magnetically ordered states, but confirmed the presence of Co vacancies. X-ray absorption near-edge structure spectroscopy on Ce1.95Bi0.05Co1.85As2 showed the average oxidation state of Ce to be +3.06. Solid state NMR spectroscopy revealed a substantially reduced hyperfine field on the Co atoms in the vicinity of Bi defects.« less