skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines

Abstract

Annexin 1 (ANXA1) is a substrate for E6AP mediated ubiquitylation. It has been hypothesized that HPV 16 E6 protein redirects E6AP away from ANXA1, increasing its stability and possibly contributing to viral pathogenesis. We analyzed ANXA1 expression in HPV-positive and negative cervical carcinoma-derived cells, in cells expressing HPV-16 oncogenes and in cells transduced with shRNA targeting E6AP. We observed that ANXA1 protein expression increased in HPV-16-positive tumor cells, in keratinocytes expressing HPV-16 E6wt (wild-type) or E6/E7 and C33 cells expressing HPV-16 E6wt. ANXA1 protein expression decreased in cells transfected with E6 Dicer-substrate RNAs (DsiRNA) and C33 cells cotransduced with HPV-16 E6wt and E6AP shRNA. Moreover, colony number and proliferation rate decreased in HPV16-positive cells transduced with ANXA1 shRNA. We observed that in cells infected with HPV16, the E6 binds to E6AP to degrade p53 and upregulate ANXA1. We suggest that ANXA1 may play a role in HPV-mediated carcinogenesis. - Highlights: • ANXA1 upregulation requires the presence of E6 and E6AP and is dependent on E6 integrity. • E6 binds to E6AP to degrade p53 and upregulate ANXA1 in cells infected with HPV16. • ANXA1 plays a role in cell proliferation in HPV-positive cervical cells.

Authors:
 [1];  [2];  [3];  [4];  [1]
  1. Department of Biology, Institute of Bioscience, Language and Exact Science, São Paulo State University, São Jose do Rio Preto (Brazil)
  2. Molecular Biology Laboratory, Centre for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo (Brazil)
  3. Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo., São Paulo (Brazil)
  4. Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (Brazil)
Publication Date:
OSTI Identifier:
22581701
Resource Type:
Journal Article
Resource Relation:
Journal Name: Virology; Journal Volume: 496; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; CARCINOGENESIS; CARCINOMAS; CELL PROLIFERATION; ONCOGENES; PROTEINS; RNA; SUBSTRATES; TUMOR CELLS

Citation Formats

Calmon, Marilia Freitas, Sichero, Laura, Boccardo, Enrique, Villa, Luisa Lina, and Rahal, Paula, E-mail: rahalp@yahoo.com.br. HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines. United States: N. p., 2016. Web. doi:10.1016/J.VIROL.2016.05.016.
Calmon, Marilia Freitas, Sichero, Laura, Boccardo, Enrique, Villa, Luisa Lina, & Rahal, Paula, E-mail: rahalp@yahoo.com.br. HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines. United States. doi:10.1016/J.VIROL.2016.05.016.
Calmon, Marilia Freitas, Sichero, Laura, Boccardo, Enrique, Villa, Luisa Lina, and Rahal, Paula, E-mail: rahalp@yahoo.com.br. 2016. "HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines". United States. doi:10.1016/J.VIROL.2016.05.016.
@article{osti_22581701,
title = {HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines},
author = {Calmon, Marilia Freitas and Sichero, Laura and Boccardo, Enrique and Villa, Luisa Lina and Rahal, Paula, E-mail: rahalp@yahoo.com.br},
abstractNote = {Annexin 1 (ANXA1) is a substrate for E6AP mediated ubiquitylation. It has been hypothesized that HPV 16 E6 protein redirects E6AP away from ANXA1, increasing its stability and possibly contributing to viral pathogenesis. We analyzed ANXA1 expression in HPV-positive and negative cervical carcinoma-derived cells, in cells expressing HPV-16 oncogenes and in cells transduced with shRNA targeting E6AP. We observed that ANXA1 protein expression increased in HPV-16-positive tumor cells, in keratinocytes expressing HPV-16 E6wt (wild-type) or E6/E7 and C33 cells expressing HPV-16 E6wt. ANXA1 protein expression decreased in cells transfected with E6 Dicer-substrate RNAs (DsiRNA) and C33 cells cotransduced with HPV-16 E6wt and E6AP shRNA. Moreover, colony number and proliferation rate decreased in HPV16-positive cells transduced with ANXA1 shRNA. We observed that in cells infected with HPV16, the E6 binds to E6AP to degrade p53 and upregulate ANXA1. We suggest that ANXA1 may play a role in HPV-mediated carcinogenesis. - Highlights: • ANXA1 upregulation requires the presence of E6 and E6AP and is dependent on E6 integrity. • E6 binds to E6AP to degrade p53 and upregulate ANXA1 in cells infected with HPV16. • ANXA1 plays a role in cell proliferation in HPV-positive cervical cells.},
doi = {10.1016/J.VIROL.2016.05.016},
journal = {Virology},
number = ,
volume = 496,
place = {United States},
year = 2016,
month = 9
}
  • MicroRNAs are involved in cancer-related processes. The microRNA-21(miR-21) has been identified as the only miRNA over-expressed in a wide variety of cancers, including cervical cancer. However, the function of miR-21 is unknown in cervical carcinomas. In this study, we found that the inhibition of miR-21 in HeLa cervical cancer cells caused profound suppression of cell proliferation, and up-regulated the expression of the tumor suppressor gene PDCD4. We also provide direct evidence that PDCD4-3'UTR is a functional target of miR-21 and that the 18 bp putative target site can function as the sole regulatory element in HeLa cells. These results suggestmore » that miR-21 may play an oncogenic role in the cellular processes of cervical cancer and may serve as a target for effective therapies.« less
  • Human papillomavirus (HPV) L1 and L2 capsid protein expression is restricted to the granular layer of infected, stratified epithelia and is regulated at least partly at post-transcriptional levels. For HPV16, a 79 nt late regulatory element (LRE) is involved in this control. Using W12 cells as a model for HPV16-infected differentiating cervical epithelial cells we show that HuR, a key cellular protein that controls mRNA stability, binds the LRE most efficiently in nuclear and cytoplasmic extracts of differentiated cells. Further, HuR binds the 3' U-rich portion of the LRE directly in vitro. Overexpression of HuR in undifferentiated W12 cells resultsmore » in an increase in L1 mRNA and protein levels while siRNA knock-down of HuR in differentiated W12 cells depletes L1 expression. In differentiated cervical epithelial cells HuR may bind and stabilise L1 mRNAs aiding translation of L1 protein.« less
  • The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and {beta}-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomalmore » translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-{kappa}B pathway was investigated, CaSki cells overexpressing DN-MAML exhibited loss of phospho-I{kappa}B{alpha}, decreased total I{kappa}B{alpha} and nuclear localization of NF-{kappa}B p65, which suggests that the NF-{kappa}B pathway is hyperactivated. Furthermore, increased level of cleaved Notch1 was detected when DN-MAML was expressed. When DN-MAML-overexpressing cells were treated with GSI, significantly decreased cell viability was observed, indicating that inhibition of Notch signaling using GSI treatment and DN-MAML expression negatively affects cell viability. Taken together, targeting Notch signaling using DN-MAML and GSI treatment may present a novel method to control cell viability in cervical cancer cells.« less
  • Highlights: Black-Right-Pointing-Pointer Sodium arsenite down-regulates the protein expression level of XIAP in HCC. Black-Right-Pointing-Pointer Sodium arsenite inhibits the de novo XIAP synthesis and its IRES activity. Black-Right-Pointing-Pointer Sodium arsenite decreases XIAP stability and promotes its proteasomal degradation. Black-Right-Pointing-Pointer Overexpression of XIAP attenuates the pro-apoptotic effect of sodium arsenite. -- Abstract: X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitors of apoptosis protein (IAP) family, and has been reported to exhibit elevated expression levels in hepatocellular carcinoma (HCC) and promote cell survival, metastasis and tumor recurrence. Targeting XIAP has proven effective for the inhibition of cancer cell proliferationmore » and restoration of cancer cell chemosensitivity. Arsenic (or sodium arsenite) is a potent anti-tumor agent used to treat patients with acute promyelocytic leukemia (APL). Additionally, arsenic induces cell growth inhibition, cell cycle arrest and apoptosis in human HCC cells. In this study, we identified XIAP as a target for sodium arsenite-induced cytotoxicity in HCC. The exposure of HCC cell lines to sodium arsenite resulted in inhibition of XIAP expression in both a dose- and time-dependent manner. Sodium arsenite blocked the de novo XIAP synthesis and the activity of its internal ribosome entry site (IRES) element. Moreover, treatment with sodium arsenite decreased the protein stability of XIAP and induced its ubiquitin-proteasomal degradation. Overexpression of XIAP attenuated the pro-apoptotic effect of sodium arsenite in HCC. Taken together, our data demonstrate that sodium arsenite suppresses XIAP expression via translational and post-translational mechanisms in HCC.« less
  • We compared the levels of the Ski oncoprotein, an inhibitor of transforming growth factor-beta (TGF-β) signaling, in normal human keratinocytes (HKc), HPV16 immortalized HKc (HKc/HPV16), and differentiation resistant HKc/HPV16 (HKc/DR) in the absence and presence of TGF-β. Steady-state Ski protein levels increased in HKc/HPV16 and even further in HKc/DR, compared to HKc. TGF-β treatment of HKc, HKc/HPV16, and HKc/DR dramatically decreased Ski. TGF-β-induced Ski degradation was delayed in HKc/DR. Ski and phospho-Ski protein levels are cell cycle dependent with maximal Ski expression and localization to centrosomes and mitotic spindles during G2/M. ShRNA knock down of Ski in HKc/DR inhibited cellmore » proliferation. More intense nuclear and cytoplasmic Ski staining and altered Ski localization were found in cervical cancer samples compared to adjacent normal tissue in a cervical cancer tissue array. Overall, these studies demonstrate altered Ski protein levels, degradation and localization in HPV16-transformed human keratinocytes and in cervical cancer. - Highlights: • Ski oncoprotein levels increase during progression of HPV16-transformed cells. • Ski and phospho-Ski protein levels are cell cycle dependent. • Ski knock-down in HPV16-transformed keratinocytes inhibited cell proliferation. • Cervical cancer samples overexpress Ski.« less