skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancing luminescence of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors by doping with Li{sup +} ions for near ultraviolet based solid state lighting

Abstract

Graphical abstract: The emission spectra of Lu{sub 2}MoO{sub 6}:3%Eu{sup 3+}, x%Li{sup +} phosphors under 365 nm excitation. The inset represents emission intensity of 610 nm as a function of Li{sup +} molar concentration. - Highlights: • Lu{sub 2}MoO{sub 6}:3%Eu{sup 3+}, x%Li{sup +} phosphors were synthesized by solid-state reaction method. • All the prepared phosphors can be assigned to its monoclinic phase. • The optimal concentration of Li{sup +} ions is 30mol%. • The luminescent intensity of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors has been greatly enhanced by codoping Li{sup +} ions. - Abstract: Lu{sub 2}MoO{sub 6}: 3% Eu{sup 3+} co-doped with x% Li{sup +} (x = 0–40 mol) phosphors were synthesized by high-temperature solid-state reaction method. The structure and luminescent properties of these phosphors were investigated. The X-ray diffraction (XRD) results show that all prepared phosphors can be assigned to monoclinic phase and codoping with Li{sup +} ions does not change their crystallographic structure. The excitation and emission spectra show that the samples can be effectively excited by the near ultraviolet light at 365 nm and exhibit strong red emission centered at 610 nm. The experimental results indicate the red luminescent intensity of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors has been greatlymore » enhanced by codoping with Li{sup +} ions. The enhancement of the luminescent intensity can be the consequence of the modification of the local field symmetry around the Eu{sup 3+} ion, improved crystallization, and the enlarged grain size induced by the Li{sup +} ions.« less

Authors:
 [1]; ; ; ; ; ;  [1];  [2]
  1. School of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)
  2. Department of Physics, University of Science and Technology of China, Hefei 230026 (China)
Publication Date:
OSTI Identifier:
22581551
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 78; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION SPECTRA; CONCENTRATION RATIO; CRYSTAL STRUCTURE; CRYSTALLIZATION; CRYSTALS; DOPED MATERIALS; EMISSION SPECTRA; EUROPIUM IONS; GRAIN SIZE; LITHIUM IONS; LUMINESCENCE; LUTETIUM COMPOUNDS; MOLYBDATES; MONOCLINIC LATTICES; PHOSPHORS; ULTRAVIOLET RADIATION; X-RAY DIFFRACTION

Citation Formats

Li, Li, E-mail: lilic@cqupt.edu.cn, Shen, Jun, Pan, Yu, Zhou, Xianju, Huang, He, Chang, Wenxuan, He, Qiwei, and Wei, Xiantao. Enhancing luminescence of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors by doping with Li{sup +} ions for near ultraviolet based solid state lighting. United States: N. p., 2016. Web. doi:10.1016/J.MATERRESBULL.2016.02.006.
Li, Li, E-mail: lilic@cqupt.edu.cn, Shen, Jun, Pan, Yu, Zhou, Xianju, Huang, He, Chang, Wenxuan, He, Qiwei, & Wei, Xiantao. Enhancing luminescence of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors by doping with Li{sup +} ions for near ultraviolet based solid state lighting. United States. doi:10.1016/J.MATERRESBULL.2016.02.006.
Li, Li, E-mail: lilic@cqupt.edu.cn, Shen, Jun, Pan, Yu, Zhou, Xianju, Huang, He, Chang, Wenxuan, He, Qiwei, and Wei, Xiantao. 2016. "Enhancing luminescence of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors by doping with Li{sup +} ions for near ultraviolet based solid state lighting". United States. doi:10.1016/J.MATERRESBULL.2016.02.006.
@article{osti_22581551,
title = {Enhancing luminescence of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors by doping with Li{sup +} ions for near ultraviolet based solid state lighting},
author = {Li, Li, E-mail: lilic@cqupt.edu.cn and Shen, Jun and Pan, Yu and Zhou, Xianju and Huang, He and Chang, Wenxuan and He, Qiwei and Wei, Xiantao},
abstractNote = {Graphical abstract: The emission spectra of Lu{sub 2}MoO{sub 6}:3%Eu{sup 3+}, x%Li{sup +} phosphors under 365 nm excitation. The inset represents emission intensity of 610 nm as a function of Li{sup +} molar concentration. - Highlights: • Lu{sub 2}MoO{sub 6}:3%Eu{sup 3+}, x%Li{sup +} phosphors were synthesized by solid-state reaction method. • All the prepared phosphors can be assigned to its monoclinic phase. • The optimal concentration of Li{sup +} ions is 30mol%. • The luminescent intensity of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors has been greatly enhanced by codoping Li{sup +} ions. - Abstract: Lu{sub 2}MoO{sub 6}: 3% Eu{sup 3+} co-doped with x% Li{sup +} (x = 0–40 mol) phosphors were synthesized by high-temperature solid-state reaction method. The structure and luminescent properties of these phosphors were investigated. The X-ray diffraction (XRD) results show that all prepared phosphors can be assigned to monoclinic phase and codoping with Li{sup +} ions does not change their crystallographic structure. The excitation and emission spectra show that the samples can be effectively excited by the near ultraviolet light at 365 nm and exhibit strong red emission centered at 610 nm. The experimental results indicate the red luminescent intensity of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors has been greatly enhanced by codoping with Li{sup +} ions. The enhancement of the luminescent intensity can be the consequence of the modification of the local field symmetry around the Eu{sup 3+} ion, improved crystallization, and the enlarged grain size induced by the Li{sup +} ions.},
doi = {10.1016/J.MATERRESBULL.2016.02.006},
journal = {Materials Research Bulletin},
number = ,
volume = 78,
place = {United States},
year = 2016,
month = 6
}
  • Two dense inorganic-organic frameworks were prepared using the intrinsically luminescent organic ligand 9-fluorenone-2,7-dicarboxylic acid (H{sub 2}FDC) in combination with the alkaline earth metals calcium and strontium. Ca(FDC)(H{sub 2}O){sub 2} (1) and Sr(FDC)(H{sub 2}O){sub 5} {center_dot} 2H{sub 2}O (2) were prepared hydrothermally and both adopt three-dimensional framework structures. They absorb strongly between 380 and 460 nm and show broad visible emission with peaks at 503 and 526 nm, respectively. Structure 1 shows a quantum yield at room temperature of 7.8% which increases to 15% at -196 C, while structure 2 shows a room temperature quantum yield of 2.8%, increasing to 3.3%more » at -196 C.« less
  • A solid solution strategy helps increase the efficiency of Ce{sup 3+} oxyfluoride phosphors for solid-state white lighting. The use of a phosphor-capping architecture provides additional light extraction. The accompanying image displays electroluminescence spectra from a 434-nm InGaN LED phosphor that has been capped with the oxyfluoride phosphor.
  • Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwavemore » technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.« less
  • The preparation of Eu 2+-substituted barium aluminum silicates is achieved using a rapid microwave-assisted preparation. The phase evolution of two BaAl 2Si 2O 8:Eu 2+ polymorphs, the higher temperature hexagonal phase (hexacelsian), and the lower temperature monoclinic phase (celsian), is explored by varying the ramp time and soak time. This preparation method significantly reduces the reaction time needed to form these phases compared to conventional solid state routes. The luminescent properties of the two phases are identified under UV excitation with the hexagonal phase emitting in the UV region (λ em = 372 nm) and the monoclinic phase emitting inmore » the blue region (λ em = 438 nm). The differences in optical properties of the two polymorphs are correlated to the coordination number and arrangement of the alkali earth site. The optical properties of the monoclinic phase can be further tuned through the substitution of Sr 2+, forming the solid solution (Ba 1–xSr x)Al 2Si 2O 8:Eu 2+. Changes in the crystal structure due to Sr 2+ substitution produce a surprising blue-shift in the emission spectrum, which is explained by a greater dispersion of bond lengths in the (Ba/Sr)–O polyhedra. The entire monoclinic solid solution exhibits excellent quantum yields of nearly 90 %, owing to the structural rigidity provided by the highly connected tetrahedral network.« less